DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Dynamic Programming with State-Dependent Discounting

John Stachurski Junnan Zhang

December 17, 2020

We study dynamic programming with a discount *function* $\beta(z)$ instead

of a constant discount factor $\boldsymbol{\beta}$

- Give an "eventual discounting" condition on β(·) analogous to β < 1 and recover classical results</p>
- Show how to test the condition in applications
- Consider extensions related to recursive preferences and unbounded rewards

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

ventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

・ロト・西ト・ヨト ・日・ うへぐ

Classical DP

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

・ロト・西ト・ヨト ・日・ うへぐ

Classical DP

State-Dependent Discount Factors
Framework
Assumptions
Key Results
Eventual Discounting
Extensions
Recursive Preferences
Unbounded Rewards

DP with SDD

Stachurski, Zhang

Classical DP

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

A typical dynamic program

$$\max_{\{x_t\}_{t=1}^{\infty}} \mathbb{E}\left\{\sum_{t=0}^{\infty} \beta^t r(x_t, z_t, x_{t+1})\right\}$$

s.t. $x_{t+1} \in \Gamma(x_t, z_t)$
 $z_{t+1} \sim Q(z_t, \cdot)$

 x_0, z_0 given

We want to find

- 1. The value function $v^*(x, z)$
- 2. An optimal policy σ^* that maps (x, z) to next-period state

DP with SDD

Stachurski, Zhang

Classical DP

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

・ロト・日本・日本・日本・日本・日本

The Bellman equation is

$$v(x, z) = (Tv)(x, z)$$

= $\sup_{x' \in \Gamma(x, z)} \{ r(x, z, x') + \beta \mathbb{E}_z v(x', z') \}$

 A crucial condition is β < 1 so that the Contraction Mapping Theorem can be applied

DP with SDD

Stachurski, Zhang

Classical DP

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Inbounded Rewards

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Under standard assumptions, we have

- 1. The value function exists and is the unique fixed point of T
- 2. There exists an optimal policy
- 3. A policy is optimal if and only if it solves the Bellman equation
- 4. Value iteration and policy iteration work
- Under additional assumptions on the primitives
 - The value function v* is increasing, strictly concave, and continuously differentiable
 - 2. The optimal policy σ^* is single-valued and continuous

Stachurski, Zhang

Classical DP

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Example: Optimal Growth Model

The agent solves

$$\max_{\substack{\{C_t, K_t\}_{t=0}^{\infty} \\ \text{s.t. } C_t = f(K_t, Z_t) - K_{t+1} \ge 0 \\ Z_{t+1} \sim Q(Z_t, \cdot)}$$

The Bellman equation is

$$v(k, z) = \sup_{0 \le k' \le f(k, z)} \left\{ u(f(k, z) - k') + \beta \mathbb{E}_z v(k', z') \right\}$$

DP with SDD

Stachurski, Zhang

Classical DP

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

References

Classical DP

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

・ロト・西ト・ヨト ・日・ うへぐ

Why State-Dependent Discount Factors?

State-dependent discounting has been adopted to explain a series empirical phenomena:

lssues	Related work	Assumptions
Equity premium puzzle	Albuquerque et al. (2016) Schorfheide et al. (2018)	Key Results Eventual Discounting
Extreme wealth distribution	Krusell and Smith (1998) Hubmer et al. (2020)	Extensions Recursive Preferences
Zero lower bound	Christiano et al. (2011) Hills and Nakata (2018)	
Macroeconomic volatility	Primiceri et al. (2006) Justiniano and Primiceri (2008)	

DP with SDD

Stachurski, Zhang

Classical D

State-Dependent Discount Factors

Dynamic Programming with State-Dependent Discounting

The agent solves

$$\max_{\{x_t\}_{t=1}^{\infty}} \mathbb{E}\left\{\sum_{t=0}^{\infty} \left(\prod_{i=0}^{t-1} \beta(z_i)\right) r(x_t, z_t, x_{t+1})\right\}$$

The Bellman equation is

$$v(x, z) = \sup_{x' \in \Gamma(x, z)} \left\{ r(x, z, x') + \beta(z) \mathbb{E}_z v(x', z') \right\}$$

DP with SDD

Stachurski, Zhang

Classical DI

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

Dynamic Programming with State-Dependent Discounting

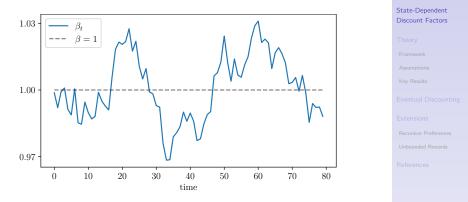


Figure 1: Simulated time path for $\{\beta_t\}$ in Hills et al. (2019)

DP with SDD

Stachurski, Zhang

Dynamic Programming with State-Dependent Discounting

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Jnbounded Rewards

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

$$(Tv)(x,z) = \sup_{x' \in \Gamma(x,z)} \left\{ r(x,z,x') + \beta(z) \mathbb{E}_z v(x',z') \right\}$$

- Since $\beta(z)$ can exceed 1 for some z, T is no longer a contraction
- What conditions should β(z) satisfy to ensure that all classical results still hold?

Classical DP

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

Classical DP

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

Framework

- A dynamic program consists of
 - 1. Endogenous state space X
 - 2. Exogenous state space Z with Markov transition kernel Q
 - 3. Feasible correspondence $\Gamma(x, z) \subset X$
 - 4. Continuation aggregator H(x, z, x', v)
- The Bellman equation is

 $v(x, z) = (Tv)(x, z) := \sup_{x' \in \Gamma(x, z)} H(x, z, x', v)$

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Framework

Example: Optimal Growth Model

\triangleright $X = \mathbb{R}_+$

- Feasible correspondence $\Gamma(x, z) = [0, f(x, z)]$
- Continuation aggregator

$$H(x, z, x', v) = u(f(x, z) - x') + \beta(z) \mathbb{E}_z v(x', z')$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

Framework

• The set of feasible policies $\Sigma := \{ \sigma : \sigma(x, z) \in \Gamma(x, z) \}$

• Any $\sigma \in \Sigma$ corresponds to a *policy operator* T_{σ}

 $(T_{\sigma}v)(x,z) := H(x,z,\sigma(x,z),v)$

The σ-value function is defined by

$$v_{\sigma}(x,z) := \lim_{n \to \infty} (T_{\sigma}^n v_0)(x,z)$$

The value function is defined by

$$v^*(x,z) = \sup_{\sigma \in \Sigma} v_{\sigma}(x,z)$$

where the maximum is achieved by σ^*

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Classical DP

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

- **Recursive Preferences**
- Unbounded Rewards

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

Assumptions

Definition (Eventual Discounting)

Let $\beta_t = \beta(Z_t)$ where $\{Z_t\}$ is a Markov process on Z with transition kernel Q. We call (β, Q) eventually discounting if for some $n \in \mathbb{N}$,

$$r_n^{\beta} := \sup_{z \in \mathsf{Z}} \mathbb{E}_z \prod_{t=0}^{n-1} \beta_t < 1$$

• Long-run average of the discount process $(r_n^{\beta})^{1/n} < 1$

Examples:

- 1. If $\beta_t \equiv b$ for all t, then eventual discounting holds iff b < 1
- 2. If $\{Z_t\}$ is IID, then $r_n^\beta = (\mathbb{E}\beta_t)^n$ and eventual discounting holds iff $\mathbb{E}\beta_t < 1$

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Inbounded Rewards

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Assumptions

One assumption on the aggregator: there exists β such that |H(x, z, x', v) − H(x, z, x', w)| ≤ β(z)E_z|v(x', z') − w(x', z')| for all (x, z) and z' ∈ Γ(x, z)

The constant discount case

$$|H(x, z, x', v) - H(x, z, x', w)| \le b ||v - w||, \quad b < 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

Classical DP

State-Dependent Discount Factors

Theory

Framework

Key Results

Eventual Discounting

Extensions

- **Recursive Preferences**
- Unbounded Rewards

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

Key Results

Theorem 2.1

If (β, Q) is eventually discounting and certain regularity conditions are satisfied, then all the classical results hold.

The Bellman operator T is *eventually contracting*: there exists an $n \in \mathbb{N}$ such that T^n is a contraction mapping

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Jnbounded Rewards

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Necessity of the Eventual Discounting Condition

Necessity

Let $\{\pi_t\}$ be a sequence of rewards such that $0 < a \le \pi_t \le b$. If Z is compact and β is continuous, then

$$\mathbb{E}\sum_{t\geq 0}\prod_{i=0}^{t-1}\beta_i\,\pi_t<\infty$$

if and only if eventual discounting holds.

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Classical DP

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

Eventual Discounting

Connection to Spectral Radii

Let L_{β} be the *discount operator* defined by

$$(L_{\beta}h)(z) := \beta(z)\mathbb{E}_z h(z').$$

The spectral radius $r(L_{\beta}) := \lim_{n \to \infty} \|L_{\beta}^n\|^{1/n}$.

Proposition 4.1

The spectral radius is $r(L_{\beta}) = \lim_{n\to\infty} (r_n^{\beta})^{1/n}$ and eventual discounting holds $(r_n^{\beta} < 1 \text{ for some } n)$ iff $r(L_{\beta}) < 1$.

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

References

Finite Exogenous State Space

- When Z is finite, $r(L_{\beta})$ is easy to calculate
- ▶ The transition kernel *Q* becomes a transition matrix of values *Q*_{ij}
- Let $\beta_i = \beta(z_i)$. The linear operator L_β becomes a matrix

 $L_{\beta} := (\beta_i Q_{ij})_{1 \le i,j \le N}$

▶ $r(L_{\beta})$ is defined by the largest absolute value of its eigenvalues

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Jnbounded Rewards

References

Eventual Discounting

Finite Exogenous State Space

In Christiano et al. (2011), β_t stays at $\beta^h > 1$ with probability p and shifts permanently to $\beta^{\ell} < 1$ with probability 1 - p. Thus,

$$L_{\beta} = \begin{pmatrix} \beta^{\ell} & 0\\ (1-p)\beta^{h} & p\beta^{h} \end{pmatrix}$$

and the eigenvalues are β^{ℓ} and $p\beta^{h}$.

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Eventual Discounting

Stationary Spectral Radius

Recall that
$$r(L_{\beta}) = \lim_{n \to \infty} (r_n^{\beta})^{1/n}$$
 where
$$r_n^{\beta} := \sup_{z \in Z} \mathbb{E}_z \prod_{t=0}^{n-1} \beta_t$$

Can we replace r_n^{β} with $s_n^{\beta} := \mathbb{E} \prod_{t=0}^{n-1} \beta_t$?

Proposition 4.2

If Z is finite and the exogenous state process $\{Z_t\}$ is irreducible, then $r(L_\beta)$ satisfies the stationary representation

$$r(L_{\beta}) = s^{\beta} := \lim_{n \to \infty} (s_n^{\beta})^{1/r}$$

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

References

・ロト・西ト・ヨト ・日・ うへぐ

AR(1) in Levels

In many applications, β_t follows

$$eta_{t+1} =
ho eta_t + (1-
ho) \mu + \sigma_\epsilon \epsilon_{t+1}, \quad 0 <
ho < 1$$

We compute $r(L_{\beta})$ after following their discretization processes:

Hubmer et al. (2020)	$\rho = 0.992, \ \mu = 0.944, \ \sigma_{\epsilon} = 0.0006$	Eventual Discounting
(2020)	ρ 0.002, μ 0.011, σε 0.0000	
	$r(L_{\beta}) = 0.9469$	Recursive Preferences
Hills et al. (2019)	$ ho = 0.85, \ \mu = 0.99875, \ \sigma_{\epsilon} = 0.0062$	Unbounded Rewards
	$r(L_{\beta}) = 0.9996$	
Nakata (2016)	$ ho = 0.85, \ \mu = 0.995, \ \sigma_{\epsilon} = 0.00393$	
	$r(L_{\beta}) = 0.9953$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

AR(1) in Levels

- We discretize the process and plot r(L_β) as a function of persistence ρ and volatility σ_ε
- Main findings
 - 1. Larger $\rho, \sigma_{\epsilon} \implies$ larger $r(L_{\beta})$
 - 2. Larger $ho, \sigma_\epsilon \implies$ larger effect of increasing $\sigma_\epsilon,
 ho$

• Intuition:
$$\mathbb{E}\beta_t\beta_{t+1} = \mu^2 + \sigma_{\epsilon}^2 \frac{\rho}{1-\rho^2}$$

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

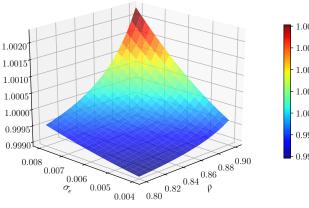
Recursive Preferences

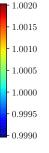
Unbounded Rewards

References

・ロト・西ト・ヨト ・日・ うへぐ

AR(1) in Levels





DP with SDD

Stachurski, Zhang

Eventual Discounting

Figure 2: $r(L_{\beta})$ as a function of ρ and σ_{ϵ} ; $\mu = 0.944$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

• Let $\{\beta_t\}$ be AR(1) in logs

$$\log(\beta_{t+1}) = \rho \log(\beta_t) + (1-\rho) \log b + \sigma_{\epsilon} \epsilon_{t+1}$$

- $\blacktriangleright \prod_{t=0}^{n-1} \beta_t = e^{\sum_t \log(\beta_t)}$
- The spectral radius r(L_β) after discretization can be closely approximated by

$$s^{\beta} = \lim_{n \to \infty} \left(\mathbb{E} \prod_{t=0}^{n-1} \beta_t \right)^{1/n} = b \exp \left(\frac{\sigma_{\epsilon}^2}{2(1-\rho)^2} \right)$$

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

Classical DP

State-Dependent Discount Factors

Theory

- Framework
- Assumptions
- Key Results

Eventual Discounting

Extensions

- **Recursive Preferences**
- Unbounded Rewards

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

References

Classical DP

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

Epstein-Zin Preferences

The lifetime utility is defined recursively by

$$U_t = \left\{ C_t^{1-1/\psi} + \beta_t \left[\mathbb{E}_t U_{t+1}^{1-\gamma} \right]^{\frac{1-1/\psi}{1-\gamma}} \right\}^{\frac{1}{1-1/\psi}}$$

$$\blacktriangleright U_t := U(C_t, C_{t+1}, \ldots)$$

- ► The agent maximizes lifetime utility by choosing consumption $\{C_t\}$ subject to $X_{t+1} = R_t(X_t C_t) \ge 0$
- Assume $\gamma > 1$ and $\psi > 1$

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Jnbounded Rewards

References

・ロト・西ト・ヨト ・日・ うへぐ

• Let
$$\beta_t = \beta(Z_t)$$
 and $R_t = R(Z_t)$

Define the aggregator by

$$H(x, z, c, v) = \left\{ c^{1-1/\psi} + \beta(z) \left[\mathbb{E}_z v \left(R(z)(x-c), z' \right)^{1-\gamma} \right]^{\frac{1-1/\psi}{1-\gamma}} \right\}^{\frac{1}{1-1/\psi}}$$

s.t. $c \in \Gamma(x, z) = [0, x]$

• The recursive utility of following policy σ is a fixed point of T_{σ} :

$$v_{\sigma}(x,z) = (T_{\sigma}v_{\sigma})(x,z) = H(x,z,\sigma(x,z),v_{\sigma})$$

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

1

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

The eventual discounting condition is

$$\sup_{z \in \mathsf{Z}} \mathbb{E}_{z} \prod_{t=0}^{n-1} \beta_{t}^{1/(1-1/\psi)} R_{t} < 1, \quad \text{for some } n \in \mathbb{N}$$

$$(L_R h)(z) := \beta(z)^{1/(1-1/\psi)} R(z) \int h(z') Q(z, dz')$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

If the eventual discounting condition is satisfied, then

- 1. $v_{\sigma} := \lim_{n \to \infty} T_{\sigma}^{n} \mathbf{0}$ is well defined and is a fixed point of T_{σ}
- 2. $\bar{v} := \lim_{n \to \infty} T^n \mathbf{0}$ is well defined and is the value function: $\bar{v} = v^* := \sup_{\sigma} v_{\sigma}$
- 3. v^* is homogeneous of degree one in x
- There exists an optimal consumption policy σ* that is homogeneous of degree one in x
- 5. The principle of optimality holds

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

・ロト・西ト・西ト・西ト・日・ 今くぐ

Eventual Discounting

Basu and Bundick (2017), de Groot et al. (2018)

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

ventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Monte Carlo

• Approximate the spectral radius by $\lim_{n\to\infty} s_n^{1/n}$, where

$$s_n = \mathbb{E} \prod_{t=0}^{n-1} \beta_t^{1/(1-1/\psi)} R_t$$

Monte Carlo: generate *m* independent simulated paths of {β_t, R_t} and calculate

$$\hat{s}_n = \frac{1}{m} \sum_{i=1}^m \prod_{t=0}^{n-1} \beta_{i,t}^{1/(1-1/\psi)} R_{i,t}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Albuquerque et al. (2016)

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

Outline

Classical DP

State-	Dependent	Discount	Factors
--------	-----------	----------	---------

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

・ロト・西ト・田・・田・・日・ シック

Consider aggregators of the form

 $H(x, z, x', v) = u(x, z, x') + \beta(z) \mathbb{E}_z v(x', z')$

- u is continuous but not necessarily bounded
- Two approaches
 - 1. Homogeneous functions: Alvarez and Stokey (1998)
 - Local contractions: Rincón-Zapatero and Rodríguez-Palmero (2003), Matkowski and Nowak (2011)

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Homogeneous Functions

Two assumptions

- Γ(·, z) homogeneous of degree one, u(·, z, ·) homogeneous of degree θ ∈ (0, 1], and other standard conditions
- 2. There exists a bounded measurable function α such that $|x'| \le \alpha(z)|x|$ for all $x' \in \Gamma(x, z)$ and there exists $n \in \mathbb{N}$ such that

$$\sup_{z\in \mathsf{Z}} \mathbb{E}_{z} \prod_{t=0}^{n-1} \beta(Z_{t}) \alpha^{\theta}(Z_{t}) < 1$$

When β and α are both constant, the second condition regresses to α^θβ < 1 in Alvarez and Stokey (1998)</p>

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Unbounded Rewards

References

・ロト・西ト・田・・田・・日・ シック

Homogeneous Functions

Proposition 5.1

If the assumptions hold, previous results hold on $H(S; \theta)$, the space of bounded continuous functions that are homogeneous of degree θ with norm defined by

 $||f|| := \sup_{z \in Z} \sup_{x \in X, ||x||=1} |f(x, z)|.$

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

ventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

References

・ロト・西ト・田・・田・・日・ シック

Local Contractions

- Let Z be compact and assume $X = \bigcup_j$ int K_j where K_j is a sequence of increasing compact sets and
- Let c > 1 and {m_j} be an unbounded sequence of increasing positive real numbers. Let C_m(S) be the space of all continuous f such that

$$||f|| := \sum_{j=1}^{\infty} \frac{||f||_j}{m_j c^j} < \infty.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

where $||f||_j$ is the sup of f on K_j

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extensions

Recursive Preferences

Unbounded Rewards

References

Local Contractions

Proposition 5.2

Under certain regularity conditions, if $r(L_{\beta}) < 1$ and $\Gamma(x, z) \subset K_i$ for

all $x \in K_i$, then previous results hold on $C_m(S)$ for some $\{m_i\}$.

DP with SDD

Stachurski, Zhang

Unbounded Rewards

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

References

- Albuquerque, R., M. Eichenbaum, V. X. Luo, and S. Rebelo (2016): "Valuation risk and asset pricing," *The Journal of Finance*, 71, 2861–2904.
- Alvarez, F. and N. L. Stokey (1998): "Dynamic programming with homogeneous functions," *Journal of Economic Theory*, 82, 167–189.
- Basu, S. and B. Bundick (2017): "Uncertainty shocks in a model of effective demand," *Econometrica*, 85, 937–958.
- Christiano, L., M. Eichenbaum, and S. Rebelo (2011): "When is the government spending multiplier large?" *Journal of Political Economy*, 119, 78–121.
- de Groot, O., A. W. Richter, and N. A. Throckmorton (2018): "Uncertainty shocks in a model of effective demand: Comment," *Econometrica*, 86, 1513–1526.
- Hills, T. S. and T. Nakata (2018): "Fiscal multipliers at the zero lower bound: the role of policy inertia," *Journal of Money, Credit and Banking*, 50, 155–172.

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Jnbounded Rewards

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

References

- Hills, T. S., T. Nakata, and S. Schmidt (2019): "Effective lower bound risk," *European Economic Review*, 120, 103321.
- Hubmer, J., P. Krusell, and A. A. Smith (2020): "Sources of US wealth inequality: Past, present, and future," *NBER Macroeconomics Annual* 2020, volume 35.
- Justiniano, A. and G. E. Primiceri (2008): "The time-varying volatility of macroeconomic fluctuations," *American Economic Review*, 98, 604–41.
- Krusell, P. and A. A. Smith (1998): "Income and wealth heterogeneity in the macroeconomy," *Journal of Political Economy*, 106, 867–896.
- Matkowski, J. and A. S. Nowak (2011): "On discounted dynamic programming with unbounded returns," *Economic Theory*, 46, 455–474.
- Nakata, T. (2016): "Optimal fiscal and monetary policy with occasionally binding zero bound constraints," *Journal of Economic Dynamics and Control*, 73, 220–240.
- Primiceri, G. E., E. Schaumburg, and A. Tambalotti (2006): "Intertemporal disturbances," Tech. rep., National Bureau of Economic Research.

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences Unbounded Rewards

References

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

References

DP with SDD

Stachurski, Zhang

Classical DF

State-Dependent Discount Factors

Theory

Framework

Assumptions

Key Results

Eventual Discounting

Extension

Recursive Preferences

Jnbounded Rewards

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Rincón-Zapatero, J. P. and C. Rodríguez-Palmero (2003): "Existence and uniqueness of solutions to the Bellman equation in the unbounded case," *Econometrica*, 71, 1519–1555.

Schorfheide, F., D. Song, and A. Yaron (2018): "Identifying Long-Run Risks: A Bayesian Mixed-Frequency Approach," *Econometrica*, 86, 617–654.