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Production Chains

» Kikuchi, Nishimura, and Stachurski
(2018) (“Span of control, transaction
costs, and the structure of production
chains”)

» Assumptions:

1. Cost function c increasing and
strictly convex

2. Transaction cost § > 1
Firm 2 sells at p; Firm 1 pays dp
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P Source: Kikuchi, Nishimura, and Stachurski (2018)
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» The firm at stage s chooses t to minimize cost:

min {c(s —t) +dp(t)}
» For example, firm 2's total cost: c(t; — t2) + dp(t2)
» Equilibrium price:

p*(s) = min{c(s — 1) +8p"(t)}
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Main Results

» Uniqueness of the equilibrium price function
» An algorithm for faster computation

P> Extension to the stochastic case
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» The stage of production is index by s € [0, 1]
» Each firm faces
Model
1. price function p: [0, 1] — Ry
2. cost function ¢ : [0,1] — R4
3. transaction costs > 1 and g: N — R
» Assumptions:

1. c differentiable, increasing, and strictly convex
2. ¢(0)=0and c'(0) >0
3. g(1) =0, g strictly increasing, and g(k) — oo as k — oo

> Firm at stage s minimizes cost

min {c(s — t) + g(k) + 6kp(t/k)}
kEN
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» Equilibrium price p* satisfies
p(s) =Tp(s) := min{c(s — t) + g(k) + okp™(t/K)}
kEN
P> Find the fixed point of operator T

» Problem: contraction mapping doesn't work because § > 1
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Basic Idea

» A theorem due to Du (1989) Concave Operators
» Consider a function T defined on [uo, vo]. If

1. T is increasing and concave
2. T(up) > up
3. T(v) < w

> Then

1. T has a unique fixed point x* in [ug, v]
2. T"(x) — x* for all x € [ug, vo]



Monotone Concave Operator Theory

Figure 1: A Simple Example in R
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Concave Operators
» Theorem 3.1 in the paper
> T is defined on any partially ordered Banach space

1. [uo, vo]: an order interval
2. Similar definitions of increasing and concave operators
3. Other technical conditions on the Banach space

» T7(x) — x* in norm
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Theorem 3.2

Let up(s) = c'(0)s, w(s) = c(s), and [uo, vo] be the order interval on Uniqueness
C([0, 1]) with the usual partial order. If the above assumptions hold,

then T has a unique fixed point p* in [uo, vo]. Furthermore, T"p — p*

for any p € [uog, vo].

p(s)=Tp'(s) = min {c(s — 1) + g(k) + 6kp™(t/k)}

keN



Equilibrium Price

production stage (s)

Figure 2: An example of equilibrium price function
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Computation

» One way to compute p* is pick any p € [uo, wo] and compute T"p

with large n: usually slow
> A faster algorithm

1. Choose grid points {0, h, 2h, ..., 1}

2. Set p(0)=0ands=nh

3. Repeat:
i Set p(s) by

p(s) = min {c(s —t) + g(k) + okp(t/k)}
keN

i Define p on [0, s] by linear interpolation
i Sets=s+ h;if s> 1, stop

» Advantage: for a certain number of grid points, the number of

optimizations required is fixed
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TheOrem 4 1 Computation

As the number of grid points goes to infinity, the price functions
computed from the algorithm converge to p* uniformly.
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Figure 3: Speed comparison



Stochastic Case

» What if firms cannot
choose the exact
number of upstream
partners?

> We assume each firm
chooses a ‘“search
effort” A: the resulting
number of partners
follows a Poisson
distribution

0.2

Figure 4: Distributions for different A
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> New equilibrium price:
p'(s) = min{c(s — t) + B} [g(K) + 6kp" (t/K)] }
A>0

» Under the same assumptions, uniqueness holds and the algorithm
works



Production Networks with Uncertainty
Specification: c(s) = s%, g(k) = B(k — 1)1-2

(b) B= 0.00'05, §=11,0=12
o

(c) B =0.0001, § = 1.05, 6 =1.2

.
(d) B =0.0005, § =1.05, § = 1.15
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Production Networks with Uncertainty
Specification: c(s) = s%, g(k) = B(k — 1)1-2

(a) 6 =1.05

(b)6=11
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Production Networks with Uncertainty
Specification: c(s) = s%, g(k) = B(k — 1)1-2

(a) B =0.0005

(c) B =0.0001
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Production Networks with Uncertainty
Specification: c(s) = s%, g(k) = B(k — 1)1-2

(a)6=1.2

(d) =115
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