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Abstract. Systems of the form 𝑥 = (𝐴𝑥𝑠)1/𝑠 + 𝑏 arise in a range of economic and
financial applications, where 𝐴 is a linear operator acting on a space of real-valued
functions (or vectors) and 𝑠 is a nonzero real value. In these applications, attention
is focused on positive solutions. We provide a simple characterization of existence
and uniqueness of positive solutions when 𝑏 is positive and 𝐴 is irreducible.
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1. Introduction

The system of equations

𝑥 = 𝐴𝑥 + 𝑏 where 𝐴 is a linear map (1)

occurs naturally in many areas of mathematics and statistics and its properties are
well-known. Often these properties connect to the spectral radius 𝑟(𝐴) of the operator
𝐴. For example, when 𝑥 takes values in R𝑛, 𝐴 is irreducible and 𝑏 is nonnegative and
nonzero, the system (1) has a unique everywhere positive solution if and only if
𝑟(𝐴) < 1. (See, for example, [3], Theorem 3.2, or [20], Theorem 2.3.6.)

In this paper, rather than (1), we study the transformed system

𝑥 = (𝐴𝑥𝑠)1/𝑠 + 𝑏, (2)

where 𝑥 is a real-valued function, powers are taken pointwise, and 𝑠 ∈ R is nonzero.
Such systems arise in a range of economic and financial problems, as well as in dis-
crete time dynamic optimization. In these cases, the interest is typically on positive
solutions, since they relate to prices or physical quantities. Our aim is to provide
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necessary and sufficient conditions for existence and uniqueness of these positive so-
lutions. Our main result shows the following under regularity conditions that are
always satisfied for the finite-dimensional case: for a positive irreducible linear oper-
ator 𝐴 and positive vector 𝑏, the system (2) has a unique (strictly) positive solution
if and only if 𝑟(𝐴)1/𝑠 < 1. This generalizes the result mentioned in the first paragraph
for the affine system (1).

In order to obtain the result stated above, our first step is to extend a pair of fixed
point theorems originally obtained in [8], which consider order-preserving concave and
convex operators that map an order interval of an ordered Banach space into itself.
We extend these results to order-preserving operators acting either on the positive
cone or the interior of the positive cone (rather than an order interval). With these
extended fixed point results we prove the sufficiency component of our main theorem
(i.e., conditions under which 𝑟(𝐴)1/𝑠 < 1 is sufficient for existence and uniqueness of
solutions to (2)). We prove necessity using an argument that builds on the Krein–
Rutman theorem. Both our sufficient and our necessary conditions are valid for all
nonzero values of 𝑠.

We give several applications of our result. The first looks at solutions to recursive
utility models, focusing on the class of Epstein–Zin preference settings that have
become increasingly important for specifying and solving asset pricing models. The
next considers state-dependent discounting in an optimal savings problem used in
macroeconomic modeling. The third examines the wealth-consumption ratio and the
fourth considers output growth with CES production technology.

Regarding related work, studies that directly tackle existence and uniqueness of so-
lutions to (2) are scarce. However, if we write (2) as 𝑥 = 𝐵𝑥 + 𝑏 where 𝐵 is allowed
to be nonlinear, then we obtain a generalization of operator equations studied by
[23, 24, 6, 25]. In this line of work, 𝐵 is typically assumed to be 𝛼-concave. (An oper-
ator 𝐵 is 𝛼-concave if for any 𝑡 ∈ (0, 1), there exists 𝛼 ∈ (0, 1) such that 𝐵(𝑡𝑥) ⩾ 𝑡𝛼𝐵𝑥.).
This property is not generally satisfied in our case. Alternatively, Theorem 2.6 of [23]
provides sufficient conditions for existence and uniqueness of positive solutions when
𝐵 is positive homogeneous of degree one on the positive cone. This result is also not
directly applicable to our problem.

A second major line of work related to our results involves analysis using the Thomp-
son and Hilbert projective metrics. One connection is the following: under the con-
ditions considered in this paper, the map associated with (2) is order-preserving and
subhomogeneous. This implies nonexpansiveness in the Thompson metric (see, e.g.,
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[16]). The monograph [19] provides foundational theory for nonexpansive mappings
under these metrics, including conditions under which local stability of locally differ-
entiable mappings implies global stability. (Local stability requires that the spectral
radius of the gradient evaluated at the fixed point is less than one.) The results in
[19] are extended to semidifferentiable maps in [1]. Other work that gives related
conditions for subhomogeneous maps includes [14], who requires the fixed point be
locally attractive, and [15], who requires a stronger version of the order-preserving
property.

Although the results from the previous paragraph can be applied to handle the power-
transformed affine system (2), since the associated map 𝐹𝑥 ≔ (𝐴𝑥𝑠)1/𝑠 + 𝑏 is both
differentiable and subhomogeneous, we have chosen to build instead on fixed point
theory for order-preserving concave and convex operators. (These are the results
in [8] mentioned above.) The reason we have done so is that the results from the
previous paragraph assume the existence of a fixed point, whereas our aim is to give
exact necessary and sufficient conditions for both existence and uniqueness of positive
solutions. As we show below, the map 𝐹 is always either concave or convex, depending
on the value of 𝑠.

Concluding our discussion of related work, we note that the results in [8] are part of
a broader literature providing conditions for existence and uniqueness of fixed points
of order-preserving concave and convex operators on ordered vector space. Other
examples include [2, 3, 11, 13, 16]. However, none of these fixed point theorems are
directly applicable in our case. For example, [3] and [11] provide results that are
useful for establishing uniqueness but not existence. [16] provide a result establishing
both existence and uniqueness for concave order-preserving maps, but they require
order theoretic conditions (either Dedekind completeness or 𝜎-order continuity plus
𝜎-Dedekind completeness) that fail in our setting (unless we restrict attention to the
finite-dimensional case). Their concavity condition also fails for some values of 𝑠.

2. Fixed Point Theory

Let (𝐵, ∥ · ∥,⩽) be a Banach lattice with positive cone 𝑃 (see, e.g., [18]), so that 𝑥 ⩽ 𝑦

if and only if 𝑦 − 𝑥 ∈ 𝑃. We assume throughout that 𝑃 is solid (i.e., has nonempty
interior), and denote the interior of 𝑃 by 𝑃̊. For 𝑥, 𝑦 ∈ 𝐵, we write 𝑥 ≪ 𝑦 if 𝑦 − 𝑥 ∈ 𝑃̊.
The expression 𝑥 ≪ 𝑦 will sometimes be written 𝑦 ≫ 𝑥 with identical meaning.
Obviously (a) 𝑦 ∈ 𝑃̊ if and only if 0 ≪ 𝑦 and (b) 𝑥 ≪ 𝑦 implies 𝑥 ⩽ 𝑦. In what follows
we call elements of 𝑃̊ strictly positive.
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Let 𝐸 be an arbitrary subset of 𝐵. A function 𝐺 : 𝐸 → 𝐵 is called order-preserving on
𝐸 if 𝑥, 𝑦 ∈ 𝐸 and 𝑥 ⩽ 𝑦 implies 𝐺𝑥 ⩽ 𝐺𝑦. When 𝐸 is convex, the function 𝐺 is called
convex on 𝐸 if 𝐺(𝜆𝑥 + (1− 𝜆)𝑦) ⩽ 𝜆𝐺𝑥 + (1− 𝜆)𝐺𝑦 for all 𝑥, 𝑦 ∈ 𝐸 and 𝜆 in [0, 1]. 𝐺 is
called concave on 𝐸 if −𝐺 is convex on 𝐸. We call 𝐺 a self-map on 𝐸 if 𝑥 ∈ 𝐸 implies
𝐺𝑥 ∈ 𝐸. We define a self-map 𝐺 on 𝐸 to be globally stable on 𝐸 if 𝐺 has a unique fixed
point 𝑥 in 𝐸 and, for each 𝑥 ∈ 𝐸, we have ∥𝐺𝑘𝑥 − 𝑥∥ → 0 as 𝑘 → ∞.

We note the following elementary properties of 𝐵.

Lemma 2.1. For elements 𝑥, 𝑦, 𝑧 ∈ 𝐵, the following statements are true:

(i) 𝑥 ⩾ 0 and 𝑦 ≫ 0 implies 𝑥 + 𝑦 ≫ 0.
(ii) 𝑥 ⩾ 𝑦 and 𝑦 ≫ 𝑧 implies 𝑥 ≫ 𝑧.

(iii) 𝑥 ≫ 𝑦 and 𝑦 ⩾ 𝑧 implies 𝑥 ≫ 𝑧.
(iv) 𝑃̊ is a sublattice of 𝐵; that is, 𝑥, 𝑦 ≫ 0 implies 𝑥 ∧ 𝑦 ≫ 0 and 𝑥 ∨ 𝑦 ≫ 0.

For completeness, a proof of Lemma 2.1 is given in the appendix.

We can now state our first fixed point result.

Theorem 2.2 (Concave Case 1). Let 𝐺 be an order-preserving concave self-map on
𝑃̊. If

(i) for all 𝑥 ≫ 0, there exists a 𝑝 ≫ 0 such that 𝑝 ⩽ 𝑥 and 𝐺𝑝 ≫ 𝑝, and
(ii) for all 𝑥 ≫ 0, there exists a 𝑞 ≫ 0 such that 𝑥 ⩽ 𝑞 and 𝐺𝑞 ⩽ 𝑞,

then 𝐺 is globally stable on 𝑃̊.

Proof. Fix 𝑥 ∈ 𝑃̊, which is nonempty by assumption. Choose 𝑝, 𝑞 ∈ 𝑃̊ as in (i)–(ii)
above. Evidently 𝐺 is an order-preserving concave self-map on [𝑝, 𝑞]. By these facts,
the condition 𝐺𝑝 ≫ 𝑝 and Theorem 3.1 of [8], 𝐺 has a unique fixed point 𝑥 in [𝑝, 𝑞].
Since 0 ≪ 𝑝 ⩽ 𝑥, we have 𝑥 ∈ 𝑃̊ by Lemma 2.1.

Now pick any 𝑦 ∈ 𝑃̊. We claim that 𝐺𝑘𝑦 → 𝑥 as 𝑘 → ∞. To see this, we use
Lemma 2.1 to obtain 𝑦 ∧ 𝑥 ≫ 0, which means we can find 𝑐 ≫ 0 such that 𝐺𝑐 ≫ 𝑐

and 𝑐 ⩽ 𝑦 ∧ 𝑥. In addition, 𝑦 ∨ 𝑥 ≫ 0, so we can take 𝑑 ≫ 0 such that 𝐺𝑑 ⩽ 𝑑 and
𝑦 ∨ 𝑥 ⩽ 𝑑. As a result,

𝑐 ⩽ 𝑦 ∧ 𝑥 ⩽ 𝑦, 𝑥 ⩽ 𝑦 ∨ 𝑥 ⩽ 𝑑.

In particular, both 𝑦 and 𝑥 lie in [𝑐, 𝑑]. Moreover, applying the same result of [8]
again, we see that 𝑥 is the only fixed point of 𝐺 in [𝑐, 𝑑] and, moreover, 𝐺𝑘𝑦 → 𝑥 as
𝑘 → ∞.
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We have now shown that 𝑥 is a fixed point of 𝐺 in 𝑃̊ and 𝐺𝑘𝑦 → 𝑥 for all 𝑦 ∈ 𝑃̊. This
implies that 𝑥 is the unique fixed point of 𝐺 in 𝑃̊. In particular, 𝐺 is globally stable
on 𝑃̊. □

In some instances 𝐺 is defined over all of the positive cone 𝑃 and we are concerned
about properties of 𝐺 on the boundary of the cone. The next result provides conditions
on 𝐺 that extend global stability to all of 𝑃 \ {0}.

Theorem 2.3 (Concave Case 2). Let 𝐺 be an order-preserving concave self-map on 𝑃

such that conditions (i)–(ii) from Theorem 2.2 hold. If, in addition, for each nonzero
𝑥 ∈ 𝑃, there exists an 𝑚 ∈ N such that 𝐺𝑚𝑥 ≫ 0, then 𝐺 is globally stable on 𝑃 \ {0}.

Proof. First we note that 𝐺 maps 𝑃̊ to itself. To see this, fix 𝑥 ∈ 𝑃̊ and use (i) to
choose a 𝑝 ≫ 0 with 𝑝 ⩽ 𝑥 and 𝐺𝑝 ≫ 𝑝. By isotonicity of 𝐺 we have 𝐺𝑥 ⩾ 𝐺𝑝. Since
𝐺𝑝 ⩾ 𝑝 ≫ 0, it follows that 𝐺𝑥 ∈ 𝑃̊. In view of Theorem 2.2, 𝐺 is globally stable when
restricted to 𝑃̊, with unique fixed point 𝑥.

Now fix nonzero 𝑥 ∈ 𝑃. Our proof will be complete if we can find an 𝛼 ∈ (0, 1) and
an 𝑀 < ∞ such that ∥𝐺𝑘𝑥 − 𝑥∥ ⩽ 𝛼𝑘𝑀 for all 𝑘 ∈ N.

By hypothesis, we can choose an 𝑚 ∈ N such that 𝑥𝑚 := 𝐺𝑚𝑥 ≫ 0. Also, since 𝐺

is globally stable when restricted to 𝑃̊, we can take a 𝛽 ∈ (0, 1) and 𝑁 < ∞ such
that ∥𝐺𝑘𝑥𝑚 − 𝑥∥ ⩽ 𝛽𝑘𝑁 for all 𝑘 ∈ N. Let 𝑒𝑖 = ∥𝐺𝑖𝑥 − 𝑥𝑚∥ for 𝑖 = 1, . . . , 𝑚 and let
𝑒 = max𝑖⩽𝑚 𝑒𝑖. If we set 𝛼 := 𝛽 and 𝑀 := 𝛽−𝑚 max{𝑁, 𝑒}, it is easy to verify that
∥𝐺𝑘𝑥 − 𝑥∥ ⩽ 𝛼𝑘𝑀 for all 𝑘 ∈ N. We conclude that 𝐺 is globally stable on 𝑃 \ {0}, as
claimed. □

Next we turn to the convex case.

Theorem 2.4 (Convex Case). Let 𝐺 be an order-preserving convex self-map on the
positive cone 𝑃. Suppose that

(i) 𝐺0 ≫ 0 and
(ii) for all 𝑥 ∈ 𝑃̊, there exists a 𝑏 ∈ 𝑃 such that 𝑥 ⩽ 𝑏 and 𝐺𝑏 ≪ 𝑏.

If these two conditions hold, then 𝐺 is globally stable on 𝑃̊.

Proof. Fix 𝑥 ∈ 𝑃̊ and choose 𝑏 ∈ 𝑃 as in (ii) above. Since 𝐺 is an order-preserving
convex self-map on [0, 𝑏] and 𝐺𝑏 ≪ 𝑏, Theorem 3.1 of [8] implies that 𝐺 has a unique
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fixed point 𝑥 in [0, 𝑏]. Moreover, 0 ⩽ 𝑥, so isotonicity of 𝐺 implies 0 ≪ 𝐺0 ⩽ 𝐺𝑥 = 𝑥.
Hence 𝑥 ∈ 𝑃̊.

Now pick any 𝑦 ∈ 𝑃̊. We claim that 𝐺𝑘𝑦 → 𝑥. Since 𝑦 ∨ 𝑥 ∈ 𝑃̊, so we can take 𝑑 ∈ 𝑃

such that 𝐺𝑑 ≪ 𝑑 and 𝑦 ∨ 𝑥 ⩽ 𝑑. Note that 0 ⩽ 𝑦, 𝑥 ⩽ 𝑦 ∨ 𝑥 ⩽ 𝑑. In particular, 𝑦 and
𝑥 are in [0, 𝑑]. Applying the same result of [8] again, this time to 𝐺 on [0, 𝑑], we see
that 𝑥 is the only fixed point of 𝐺 in [0, 𝑑] and, moreover, 𝐺𝑘𝑦 → 𝑥. This last result
also implies that 𝑥 is the only fixed point of 𝐺 in 𝑃̊. Evidently 𝐺 maps 𝑃̊ to itself, so
the proof is now done. □

3. Power-Transformed Affine Systems

In this section we apply the fixed point results of Section 2 to the class of nonlinear
equations discussed in the introduction. Below, in Section 4, we will discuss how
these problems arise in applications. Here we focus on characterizing existence and
uniqueness of positive solutions.

3.1. Environment. Returning to the system (2), we assume throughout that the
unknown object 𝑥 takes values in the set 𝐶(𝑇) of continuous real-valued functions on
compact Hausdorff space 𝑇, and that 𝐴 is a linear operator from 𝐶(𝑇) to itself. The
set 𝐶(𝑇) is a Banach lattice when paired with the supremum norm and the usual
pointwise partial order. In line with Section 2, we let 𝑃 be the positive cone of 𝐶(𝑇)
and 𝑃̊ be the interior of 𝑃. An ideal in 𝐶(𝑇) is a vector subspace 𝐼 ⊂ 𝐶(𝑇) such that
𝑔 ∈ 𝐼 and 𝑓 ∈ 𝐶(𝑇) with | 𝑓 | ⩽ |𝑔 | implies 𝑓 ∈ 𝐼.

As in the introduction, powers are pointwise operations, so that 𝑥𝑠 is the function
𝑇 ∋ 𝑡 ↦→ 𝑥𝑠(𝑡). For the powers in (2) to make sense we operate only on positive
elements of 𝐶(𝑇), as clarified below. Obviously, our treatment includes the finite-
dimensional case. (If 𝑇 is finite with 𝑛 elements, then we endow 𝑇 with the discrete
topology, in which case 𝐶(𝑇) is isometrically isomorphic to R𝑛 and (2) can be viewed
as a system of 𝑛 equations in R𝑛.)

A linear operator 𝐴 : 𝐶(𝑇) → 𝐶(𝑇) is called positive if 𝐴 is a self-map on 𝑃 and
power compact if there exists a 𝑘 ∈ N such that 𝐴𝑘 is compact (i.e., maps the unit
ball of 𝐶(𝑇) to a relatively compact subset of 𝐶(𝑇)). A positive linear operator
𝐴 is called irreducible if the only nontrivial closed ideal on which 𝐴 is invariant is
the whole space 𝐶(𝑇). The spectral radius 𝑟(𝐴) of 𝐴 can be defined by Gelfand’s
formula 𝑟(𝐴) = lim𝑘→∞ ∥𝐴𝑘∥1/𝑘, where ∥ · ∥ is the operator norm on the bounded
linear operators from 𝐶(𝑇) to itself.
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3.2. Equivalency. Let 𝐴 : 𝐶(𝑇) → 𝐶(𝑇) be a positive linear operator and suppose
𝑏 ∈ 𝐶(𝑇) and 𝑠 ∈ R with 𝑠 ≠ 0 and 𝑏 ≫ 0. In studying (2), we also handle the
representation

𝑦 = ((𝐴𝑦)1/𝑠 + 𝑏)𝑠, (3)

which is obtained from (2) via the change of variable 𝑦 = 𝑥𝑠. The system (3) is often
easier to handle than the original system (2), largely because the transformation on
the right is decomposed into one purely linear operation (i.e., 𝑦 ↦→ 𝐴𝑦) and one
nonlinear operation.

We solve the power-transformed affine systems (2) and (3) by converting them into
fixed point problems associated with the self-maps 𝐹, 𝐺 on 𝑃̊ defined by

𝐹𝑥 = (𝐴𝑥𝑠)1/𝑠 + 𝑏 and 𝐺𝑦 = ((𝐴𝑦)1/𝑠 + 𝑏)𝑠

Let 𝐻 be the homeomorphism from 𝑃̊ to itself defined by 𝐻𝑥 = 𝑥𝑠. Then 𝐹 and 𝐺 are
topologically conjugate under 𝐻, in the sense that 𝐻 ◦ 𝐹 = 𝐺 ◦ 𝐻. As a result, 𝐹 has
a unique fixed point in 𝑃̊ if and only if the same is true for 𝐺, and, moreover, fixed
points of 𝐹 and 𝐺 have the same stability properties.

3.3. Positive Solutions. In what follows, if 𝑥 ∈ 𝑃 and 𝑥 satisfies (2) then we call
𝑥 a positive solution to (2). If, in addition, 𝑥 ≫ 0, then we call 𝑥 a strictly positive
solution. Analogous terminology is used for solutions to (3).

Theorem 3.1. Suppose 𝑏 ≫ 0 and 𝑠 ∈ R with 𝑠 ≠ 0. If a positive operator 𝐴 is
irreducible and power compact, then the following statements are equivalent:

(i) 𝑟(𝐴)1/𝑠 < 1.
(ii) 𝐺 is globally stable on 𝑃̊.

Moreover, if 𝑟(𝐴)1/𝑠 ⩾ 1, then 𝐺 has no fixed point in 𝑃̊.

As an immediate consequence, we have

Corollary 3.2. Under the conditions on 𝐴, 𝑏 and 𝑠 stated in Theorem 3.1, both (2)
and (3) have a unique strictly positive solution if and only if 𝑟(𝐴)1/𝑠 < 1.

Remark 3.1. Since 𝐴 is irreducible we have 𝑟(𝐴) > 0 (see, e.g., [18], Lemma 4.2.9).
Hence we can rewrite 𝑟(𝐴)1/𝑠 < 1 as (1/𝑠)·ln 𝑟(𝐴) < 0. Thus, condition (ii) is equivalent
to the statement that 𝑟(𝐴) ≠ 1 and 𝑠 and ln 𝑟(𝐴) have opposite signs.
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3.4. Proof of Theorem 3.1. We assume throughout that the conditions on 𝐴, 𝑠 and
𝑏 imposed in Theorem 3.1 hold.

Proposition 3.3. 𝐺 is order-preserving on 𝑃̊ and has the following shape properties:

(i) 𝐺 is concave on 𝑃̊ whenever 𝑠 ∈ R \ [0, 1).
(ii) 𝐺 is convex on 𝑃̊ whenever 𝑠 ∈ (0, 1].

Proof. Fix 𝑡 ∈ 𝑇 and define

𝜑𝑡 (𝑟) :=
[
𝑟1/𝑠 + 𝑏(𝑡)

] 𝑠 (𝑟 > 0).

Then, for any 𝑦 ∈ 𝑃̊, (𝐺𝑦)(𝑡) can be written as 𝜑𝑡 [(𝐴𝑦) (𝑡)].

We first show that 𝐺 is order-preserving. Since 𝐴 is linear, irreducible (and hence
positive), 𝐴 is order-preserving on 𝐶(𝑇). It is easy to see that 𝜑𝑡 is an increasing
function for all 𝑡 ∈ 𝑇, so 𝑡 ∈ 𝑇 and 𝑦, 𝑧 ∈ 𝑃̊ with 𝑦 ⩽ 𝑧 implies

(𝐺𝑦) (𝑡) = 𝜑𝑡 [(𝐴𝑦) (𝑡)] ⩽ 𝜑𝑡 [(𝐴𝑧) (𝑡)] = (𝐺𝑧)(𝑡).

In particular, 𝐺 is order preserving on 𝑃̊.

To see that 𝐺 is concave on 𝑃̊ when 𝑠 < 0 or 𝑠 ⩾ 1, we fix 𝑦, 𝑧 ∈ 𝑃̊ and 𝜆 ∈ [0, 1] and
let ℎ := 𝜆𝑦 + (1 − 𝜆)𝑧. Observe that 𝜑𝑡 is concave in this case for all 𝑡 ∈ 𝑇. Hence,
fixing 𝑡 ∈ 𝑇 and using linearity of 𝐴,

𝜑𝑡 [(𝐴ℎ)(𝑡)] = 𝜑𝑡 [𝜆 (𝐴𝑦)(𝑡) + (1 − 𝜆)(𝐴𝑧) (𝑡)]
⩾ 𝜆𝜑𝑡 [(𝐴𝑦)(𝑡)] + (1 − 𝜆)𝜑𝑡 [(𝐴𝑧) (𝑡)] .

Hence (𝐺ℎ) (𝑡) ⩾ 𝜆 (𝐺𝑦) (𝑡) + (1 − 𝜆)(𝐺𝑧)(𝑡). Since 𝑡 ∈ 𝑇 was arbitrary, we conclude
that 𝐺 is concave on 𝑃̊.

Similarly, (ii) follows from the fact that each 𝜑𝑡 is convex when 𝑠 ∈ (0, 1]. □

Proposition 3.4. If 𝐺 has a fixed point in 𝑃̊, then 𝑟(𝐴)1/𝑠 < 1.

Proof. Let M be the topological dual space for 𝐶(𝑇). Let 𝐴∗ be the adjoint operator
associated with 𝐴.1 Since 𝐴 is irreducible and power compact, Lemma 4.2.11 of [18]
ensures us existence of an 𝑒∗ ∈ M such that

⟨𝑒∗, 𝑥⟩ > 0 for all 𝑥 ≫ 0 and 𝐴∗𝑒∗ = 𝑟(𝐴)𝑒∗. (4)
1The adjoint of a bounded linear operator 𝐴 : 𝐶(𝑇) → 𝐶(𝑇) is given by 𝐴∗ : M → M such that

⟨𝐴∗𝜇, 𝑥⟩ = ⟨𝜇, 𝐴𝑥⟩ for all 𝑥 ∈ 𝐶(𝑇) and all 𝜇 ∈ M.
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Let 𝑦̄ be a fixed point of 𝐺 in 𝑃̊.

First consider the case where 𝑠 > 0. In this case we have 𝜑𝑡 [𝑦(𝑡)] > 𝑦(𝑡) for all 𝑦 ∈ 𝑃̊

and 𝑡 ∈ 𝑇, so
𝑦̄(𝑡) = (𝐺𝑦̄)(𝑡) = 𝜑𝑡 [(𝐴𝑦̄)(𝑡)] > (𝐴𝑦̄) (𝑡).

Hence 𝑦̄ ≫ 𝐴𝑦̄. Taking 𝑒∗ as in (4), we then have ⟨𝑒∗, 𝐴𝑦̄ − 𝑦̄⟩ < 0, or, equivalently,
⟨𝑒∗, 𝐴𝑦̄⟩ < ⟨𝑒∗, 𝑦̄⟩. Using the definition of the adjoint and (4) gives 𝑟(𝐴)⟨𝑒∗, 𝑦̄⟩ =

⟨𝐴∗𝑒∗, 𝑦̄⟩ = ⟨𝑒∗, 𝐴𝑦̄⟩, so it must be that 𝑟(𝐴)⟨𝑒∗, 𝑦̄⟩ < ⟨𝑒∗, 𝑦̄⟩. As a result, 𝑟(𝐴) < 1.
Because 𝑠 > 0, we have 𝑟(𝐴)1/𝑠 < 1.

Now consider the case where 𝑠 < 0. We have 𝜑𝑡 [𝑦(𝑡)] < 𝑦(𝑡) for all 𝑦 ∈ 𝑃̊ and 𝑡 ∈ 𝑇.
As a result,

𝑦̄(𝑡) = (𝐺𝑦̄)(𝑡) = 𝜑𝑡 [(𝐴𝑦̄)(𝑡)] < (𝐴𝑦̄) (𝑡).
But then, taking 𝑒∗ as in (4), we have ⟨𝑒∗, 𝐴𝑦̄ − 𝑦̄⟩ > 0, or, equivalently, ⟨𝑒∗, 𝐴𝑦̄⟩ >

⟨𝑒∗, 𝑦̄⟩. Using (4) again gives 𝑟(𝐴)⟨𝑒∗, 𝑦̄⟩ = ⟨𝑒∗, 𝐴𝑦̄⟩, so 𝑟(𝐴)⟨𝑒∗, 𝑦̄⟩ > ⟨𝑒∗, 𝑦̄⟩. Hence
𝑟(𝐴) > 1. Because 𝑠 < 0, this yields 𝑟(𝐴)1/𝑠 < 1. □

Proposition 3.5. If 𝑟(𝐴)1/𝑠 < 1, then, for each 𝑦 ∈ 𝑃̊, there exists a pair 𝑝, 𝑞 ∈ 𝑃̊

such that 𝑝 ⩽ 𝑦 ⩽ 𝑞, 𝐺𝑝 ≫ 𝑝 and 𝐺𝑞 ≪ 𝑞.

In the proof of Proposition 3.5, we set 𝑟 := 𝑟(𝐴). We use the fact that 𝑟 > 0, and
that there exists a dominant eigenvector 𝑒 ∈ 𝑃̊ such that 𝐴𝑒 = 𝑟(𝐴)𝑒, as follows from
irreducibility and eventual compactness of 𝐴 (see, e.g., Lemma 4.2.14 of [18].)

Proof. Observe that, for each 𝑐 ∈ (0,∞), we have

𝐺(𝑐𝑒)
𝑐𝑒

=

(
(𝑐𝑟𝑒)1/𝑠 + 𝑏

(𝑐𝑒)1/𝑠

) 𝑠
=

(
𝑟1/𝑠 + 𝑏

(𝑐𝑒)1/𝑠

) 𝑠
.

Now consider the case where 𝑠 < 0 and 𝑟 > 1. Recall that 𝑇 is compact and 𝑏 ≫ 0.
Then 𝑐 → 0 implies that (𝐺(𝑐𝑒))/(𝑐𝑒) → 𝑟 uniformly, which in turn implies

∃ 𝑐0 > 0 and 𝛿0 > 1 such that 𝑐 ⩽ 𝑐0 =⇒ 𝐺(𝑐𝑒) ⩾ 𝛿0𝑐𝑒. (5)

Also, if 𝑐 → ∞, then (𝐺(𝑐𝑒))/(𝑐𝑒) → 0 uniformly, which in turn implies

∃ 𝑐1 > 0 and 𝛿1 < 1 such that 𝑐 ⩾ 𝑐1 =⇒ 𝐺(𝑐𝑒) ⩽ 𝛿1𝑐𝑒. (6)

Now suppose 𝑠 > 0 and 𝑟 < 1. In this case, 𝑐 → 0 implies that (𝐺(𝑐𝑒))/(𝑐𝑒) → ∞ uni-
formly, and hence (5) holds. Also, in the same setting, 𝑐 → ∞ implies (𝐺(𝑐𝑒))/(𝑐𝑒) →
𝑟 uniformly, and since 𝑟 < 1 we have (6).
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So far we have shown that (5) and (6) are both valid when 𝑟𝑠 < 1. Now fix 𝑦 ∈ 𝑃̊.
Since 𝑒, 𝑦 ≫ 0 and 𝑇 is compact, we have 𝑐𝑒 ≪ 𝑦 for all sufficiently small 𝑐 ∈ (0,∞).
Similarly, 𝑐𝑒 ≫ 𝑦 for all sufficiently large 𝑐. Combining these facts with (5) and (6),
we obtain 𝑝, 𝑞 ∈ 𝑃̊ with 𝑝 ⩽ 𝑦 ⩽ 𝑞, 𝐺𝑝 ≫ 𝑝 and 𝐺𝑞 ≪ 𝑞. □

Proof of Theorem 3.1. Let the conditions of Theorem 3.1 hold, in the sense that 𝑏 ≫
0, 𝑠 ∈ R \ {0} and 𝐴 is irreducible and power compact. If 𝑠 ∈ (0, 1] and 𝑟(𝐴) < 1, then
𝐺 is order-preserving and convex on 𝑃̊ by Proposition 3.3. Moreover, 𝐺0 = 𝑏𝑠 ≫ 0
and, by Proposition 3.5, for each 𝑦 ∈ 𝑃̊ there is a 𝑞 ∈ 𝑃̊ such that 𝑦 ⩽ 𝑞 and 𝑞 ≪ 𝐺𝑞.
Hence, by Theorem 2.4, 𝐺 is globally stable on 𝑃̊.

If, on the other hand, 𝑠 < 0 and 𝑟(𝐴) > 1 or 𝑠 ⩾ 1 and 𝑟(𝐴) < 1, then 𝐺 is order-
preserving and concave on 𝑃̊ by Proposition 3.3. Moreover, by Proposition 3.5, for
each 𝑦 ∈ 𝑃̊ there is a pair 𝑝, 𝑞 ∈ 𝑃̊ such that 𝑝 ⩽ 𝑦 ⩽ 𝑞, 𝐺𝑝 ≫ 𝑝 and 𝑞 ≪ 𝐺𝑞. Hence,
by Theorem 2.2, 𝐺 is globally stable on 𝑃̊.

We have now shown that 𝑟(𝐴)1/𝑠 < 1 implies 𝐺 is globally stable on 𝑃̊. For the
converse we apply Proposition 3.4, which tells us that 𝐺 has no fixed point in 𝑃̊ when
𝑟(𝐴)1/𝑠 ⩾ 1. □

4. Applications

In this section we give applications of the preceding results on power-transformed
affine systems.

4.1. Recursive Preferences. In finance, Epstein–Zin preferences have become in-
creasingly important for specifying and solving mainstream asset pricing models (see,
e.g., [17, 12, 4, 21, 10, 7]). Similar specifications have also been adopted in macroe-
conomics (see, e.g., [5]). A generic specification takes the form

𝑣 = ((1 − 𝛽)𝑐𝜌 + 𝛽(𝑅𝑣)𝜌)1/𝜌 (7)

where 𝑐 ∈ 𝑃̊ ⊂ 𝐶(𝑇) denotes consumption in each state and 𝜌 and 𝛽 are positive
parameters. The operator 𝑅 is defined at 𝑣 ∈ 𝑃̊ by 𝑅𝑣 = (𝑄𝑣𝛼)1/𝛼, where 𝛼 is a
nonzero parameter and 𝑄 is an irreducible Markov operator. The unknown function
𝑣 gives lifetime utility at each state of world.

Equation (7) has a unique positive solution if and only if 𝛽 < 1. This fact can be
derived from our results by setting 𝑤 = 𝑣𝛼, 𝑠 = 𝛼/𝜌, and rewriting (7) as

𝑤 =
{
(1 − 𝛽)𝑐𝜌 + 𝛽(𝑄𝑤)𝜌/𝛼

}𝛼/𝜌
=
{
(1 − 𝛽)𝑐𝜌 + (𝛽𝑠𝑄𝑤)1/𝑠}𝑠 .
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By Corollary 3.2, a unique strictly positive solution exists if and only if the linear
operator 𝐴 := 𝛽𝑠𝑄 is such that 𝑟(𝐴)1/𝑠 < 1. Since 𝑄 is a Markov operator we have
𝑟(𝑄) = 1, and hence 𝑟(𝐴)1/𝑠 < 1 if and only if 𝛽 < 1.

4.2. State-Dependent Discounting. [22] studies an optimal consumption problem
and shows that optimal consumption from current wealth 𝑤 takes the form

𝑐(𝑧) = 𝑏(𝑧)−1/𝛾𝑤

where 𝛾 > 0 is a parameter and 𝑏 is a function of an uncertainty state 𝑧 ∈ 𝑍 satisfying
the equation

𝑏(𝑧) =
{
1 +

[
𝛽(𝑧)𝑅(𝑧)1−𝛾 (𝑄𝑏) (𝑧)

]1/𝛾}𝛾
. (8)

Here 𝛽(𝑧) > 0 is the discount factor in state 𝑧, 𝑅(𝑧) > 0 is the gross interest rate in
state 𝑧 and 𝑄𝑏 is defined at each 𝑧 ∈ 𝑍 by

(𝑄𝑏) (𝑧) =
∑
𝑧′∈𝑍

𝑏(𝑧′)𝑞(𝑧, 𝑧′),

where 𝑞 is the transition matrix of an irreducible Markov chain. [22] shows that (8)
has a strictly positive solution if and only if the spectral radius of the linear operator
𝐴 defined by

(𝐴 𝑓 )(𝑧) := 𝛽(𝑧)𝑅(𝑧)1−𝛾
∑
𝑧′∈𝑍

𝑓 (𝑧′)𝑞(𝑧, 𝑧′) (9)

has a spectral radius less than unity. In the setting of [22], the set 𝑍 is finite.

We can prove the same result using Corollary 3.2, while also adding uniqueness.
Indeed, with 𝐴 defined as in (9), we can express (8) as

𝑏(𝑧) =
{
1 + [(𝐴𝑏)(𝑧)]1/𝛾

}𝛾
. (10)

Since 𝑞 is irreducible and 𝛽 and 𝑅 are strictly positive, the operator 𝐴 is irreducible.
Eventual compactness of 𝐴 is immediate from finiteness of 𝑍. Hence Corollary 3.2
implies that (10) has a unique strictly positive solution if and only if 𝑟(𝐴)1/𝛾 < 1.
Since 𝛾 > 0, this reduces to 𝑟(𝐴) < 1, which is the same condition used by [22].

Notice that Corollary 3.2 can also be used to relax the finiteness assumption on 𝑍

by assuming instead that 𝑍 is a compact Hausdorff space. In this case continuity
restrictions need to be placed on 𝛽 and 𝑅.
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4.3. Wealth-Consumption Ratio. Another important object in asset pricing is the
wealth-consumption ratio of the representative agent. In the setting of Section 4.1,
the equilibrium wealth-consumption ratio 𝑤 under Epstein-Zin preferences satisfies
the first-order condition

𝛽𝑠𝑄𝑤𝑠 = (𝑤 − 1)𝑠, (11)
where the operator 𝑄 is assumed to be an irreducible and power compact linear
operator that contains information about consumption growth. Letting 𝐴 := 𝛽𝑠𝑄, we
can rewrite (11) as

𝑤 = (𝐴𝑤𝑠)1/𝑠 + 1,
which has the same form as (2). By Corollary 3.2, a unique strictly positive wealth-
consumption ratio exists if and only if the linear operator 𝐴 satisfies 𝑟(𝐴)1/𝑠 < 1, or
equivalently, 𝛽𝑟(𝑄)1/𝑠 < 1.

4.4. Growth with CES Production Function. Consider a discrete time multi-
sector growth model with total depreciation and no population growth or technologi-
cal progress. The law of motion for the capital-labor ratio is given by 𝑘𝑡+1 = 𝑠 𝑓 (𝐴𝑘𝑡),
where 𝑠 is a savings rate, 𝑓 is a CES production function, 𝐴 is an irreducible ma-
trix that characterizes the technology, and 𝑘𝑡 is a vector of multi-sector capital-labor
ratios. Then the steady state capital-labor ratio satisfies

𝑘 = 𝑠 {𝜃 + (1 − 𝜃) (𝐴𝑘)𝜌}1/𝜌 , (12)

where 𝜃 ∈ (0, 1), 𝜌 ≠ 0, and all algebraic operations are performed elementwise. We
can rewrite (12) as

𝑘 =
{
𝑠𝜌𝜃 +

(
𝑠(1 − 𝜃)1/𝜌𝐴𝑘

)𝜌}1/𝜌
.

Then by Corollary 3.2, a unique and strictly positive vector of multi-sector capital-
labor ratios exists in the steady state if and only if 𝑠𝜌(1 − 𝜃)𝑟(𝐴) < 1.

Appendix A. Appendix

Let 𝐵′ be the topological dual space of 𝐵 and take 𝑃′ to be the set of all positive linear
functionals on 𝐵; that is, all 𝑥′ ∈ 𝐵′ such that ⟨𝑥′, 𝑥⟩ ⩾ 0 for all 𝑥 ∈ 𝑃. The next
lemma follows from Corollary 2.8 of [9]:

Lemma A.1. In our setting, the following statements are equivalent:

(i) 𝑥 ≫ 0.
(ii) ⟨𝑥′, 𝑥⟩ > 0 for all nonzero 𝑥′ ∈ 𝑃′.
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(iii) ∪𝑛∈N [−𝑛𝑥, 𝑛𝑥] = 𝐵.

Using Lemma A.1, we can verify Lemma 2.1.

Proof of Lemma 2.1. Regarding (i), fix 𝑥, 𝑦 ∈ 𝐵 with 𝑥 ⩾ 0 and 𝑦 ≫ 0. Fix nonzero
𝑥′ ∈ 𝑃′. Applying Lemma A.1, we have ⟨𝑥′, 𝑥 + 𝑦⟩ = ⟨𝑥′, 𝑥⟩ + ⟨𝑥′, 𝑦⟩ > 0. Hence 𝑥 ≫ 0.

Regarding (ii), given nonzero 𝑥′ ∈ 𝑃′, we have 𝑥 = (𝑥 − 𝑦) + (𝑦 − 𝑧) and 𝑥 ≫ 0 follows
from (i). The proof of (iii) is similar.

For the final claim, fix 𝑥, 𝑦 ≫ 0. Since 𝑥 ∨ 𝑦 ⩾ 𝑥, the supremum is strictly positive.
For the case of the infimum, let 𝑧 = 𝑥 ∧ 𝑦 and pick any 𝑏 ∈ 𝐵. By Lemma A.1, for 𝑛

sufficiently large, we have −𝑛𝑥 ⩽ 𝑏 ⩽ 𝑛𝑥 and −𝑛𝑦 ⩽ 𝑏 ⩽ 𝑛𝑦. It follows directly that
𝑏 ⩽ (𝑛𝑥) ∧ (𝑛𝑦) = 𝑛(𝑥 ∧ 𝑦) = 𝑛𝑧. Also, 𝑛𝑥, 𝑛𝑦 ⩾ −𝑏, so (𝑛𝑥) ∧ (𝑛𝑦) ⩾ −𝑏, or −𝑛𝑧 ⩽ 𝑏.
In particular, there exists an 𝑛 ∈ N with −𝑛𝑧 ⩽ 𝑏 ⩽ 𝑛𝑧. Applying Lemma A.1 yields
𝑧 ≫ 0. □
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