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Abstract. Systems of the form x = (Axs)1/s + b arise in a range of economic,
financial and control problems, where A is a linear operator acting on a space of
real-valued functions (or vectors) and s is a nonzero real value. In these applica-
tions, attention is focused on positive solutions. We provide a simple and complete
characterization of existence and uniqueness of positive solutions under conditions
on A and b that imply positivity.

1. Introduction

The system of equations

x = Ax+ b where A is a linear map (1)

occurs naturally in many areas of mathematics and statistics. For example, an x

solving (1) is a steady state for the elementary vector difference equation xt+1 =

Axt + b. As a second example, consider the discrete Lyapunov equation from control
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theory, which takes the form GXG⊤ − X + Q = 0, where all elements are matrices
and X is the unknown. Since X 7→ GXG⊤ is linear, this is also a version of (1).

In this paper, we study the transformed system

x = (Axs)1/s + b, s ∈ R and s 6= 0, (2)

where powers are taken pointwise (e.g., if x = (xi) ∈ Rn, then xs = (xs
i ) ∈ Rn). Such

systems arise in a range of economic and financial problems, as well as in discrete time
dynamic optimization. In these cases, the interest is typically on positive solutions,
since they relate to prices or physical quantities. (Moreover, focusing on positive
solutions avoids having to handle fractional powers of negative numbers.)

In this paper we provide a complete characterization of existence and uniqueness of
positive solutions under conditions on A and b that imply positivity. In particular,
we show that, under a regularity condition that is always satisfied for the finite-
dimensional case, the system (2) has a unique (strictly) positive solution if and only
if r(A)s < 1, where r(A) is the spectral radius of A. This finding is a natural
extension of the observation that, when A is irreducible and b is positive, (1) has a
unique positive solution if and only if r(A) < 1.

We obtain the results stated above by applying a fixed point theorem for positive
concave (or convex) operators on the positive cone. This fixed point theorem are
a small extension of known results originally obtained by Du (1990). A range of
similar fixed point results based on monotonicity and order concavity (or convexity)
are also relevant (see, e.g., Amann, 1972, 1976; Krasnosel’skii et al., 2012; Guo and
Lakshmikantham, 1988, etc.), although they are not directly applicable in our case.1

Our work is also related to Marinacci and Montrucchio (2019), who study Tarski-type
fixed points of monotone operators with applications in recursive utilities, as we do.
However, they do not study the particular class of equations that we do (i.e., those of
type (2)). Marinacci and Montrucchio (2010) and Borovička and Stachurski (2020)
provide related results on existence and uniqueness of recursive utilities.

Studies that directly tackle (2) are scarce. However, if we write (2) as x = Bx+b where
B is allowed to be nonlinear, then we obtain a generalization of operator equations

1Uniqueness of a positive solution can be guaranteed since the right hand side of (2) is increasing
and strongly sublinear (Guo and Lakshmikantham, 1988, Theorem 2.2.2). However, existence usually
requires additional assumptions (see, e.g., Krasnosel’skii et al. (2012)).
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studied by Zhai et al. (2008, 2010); Berzig and Samet (2013); Zhai and Wang (2017),
among others. In this line of work, B is typically assumed to be α-concave2, a property
not satisfied in our case when Bx = (Axs)1/s. To the best of our knowledge, the most
closely related result in this literature is Theorem 2.6 of Zhai et al. (2008), which
provides sufficient conditions for existence and uniqueness of positive solutions when
B is homogeneous. (Despite its generality, they make assumptions on the operator
B that are not applicable to our problem.)

In all of the work mentioned above, only sufficient conditions are provided. In con-
trast, our aim is to give exact necessary and sufficient conditions for existence and
uniqueness of positive solutions.

2. Fixed Point Theory

Let (B, ‖ · ‖,⩽) be a Banach lattice with positive cone P (see, e.g., Meyer-Nieberg
(2012)). By definition, we have x ⩽ y if and only if y−x ∈ P . We assume throughout
that P is solid (i.e., has nonempty interior), and denote the interior of P by P̊ . For
x, y ∈ B, we write x � y if y − x ∈ P̊ . The expression x � y will sometimes be
written y � x with identical meaning. Obviously (a) y ∈ P̊ if and only if 0 � y and
(b) x � y implies x ⩽ y. In what follows we call elements of P̊ strictly positive.

Let E be an arbitrary subset of B. A function G : E → B is called order-preserving
on E if x, y ∈ E and x ⩽ y implies Gx ⩽ Gy. When E is convex, the function G is
called convex on E if G(λx+ (1− λ)y) ⩽ λGx+ (1− λ)Gy for all x, y ∈ E and λ in
[0, 1]. G is called concave on E if −G is convex on E. We call G a self-map on E if
x ∈ E implies Gx ∈ E. We define a self-map G on E to be globally stable on E if
G has a unique fixed point x̄ in E and, for each x ∈ E, we have ‖Gkx − x̄‖ → 0 as
k → ∞.

We let B′ be the topological dual space of B and take P ′ to be the set of all positive
linear functionals on B; that is, all x′ ∈ B′ such that 〈x′, x〉 ⩾ 0 for all x ∈ P . The
next lemma follows from Corollary 2.8 of Glueck and Weber (2020):

Lemma 2.1. In our setting, the following statements are equivalent:

(i) x � 0.
2An operator B is α-concave if for any t ∈ (0, 1), there exists α ∈ (0, 1) such that B(tx) ⩾ tαBx.
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(ii) 〈x′, x〉 > 0 for all nonzero x′ ∈ P ′.
(iii) ∪n∈N[−nx, nx] = B.

Lemma 2.1 is useful for establishing basic properties of P̊ . For example,

Lemma 2.2. For elements x, y, z ∈ B, the following statements are true:

(i) x ⩾ 0 and y � 0 implies x+ y � 0.
(ii) x ⩾ y and y � z implies x � z.

(iii) x � y and y ⩾ z implies x � z.
(iv) P̊ is a sublattice of B; that is, x, y � 0 implies x ∧ y � 0 and x ∨ y � 0.

Proof. Regarding (i), fix x, y ∈ B with x ⩾ 0 and y � 0. Fix nonzero x′ ∈ P ′.
Applying Lemma 2.1, we have 〈x′, x+ y〉 = 〈x′, x〉+ 〈x′, y〉 > 0. Hence x � 0.

Regarding (ii), given nonzero x′ ∈ P ′, we have x = (x−y)+(y−z) and x � 0 follows
from (i). The proof of (iii) is similar.

For the final claim, fix x, y � 0. Since x ∨ y ⩾ x, the supremum is strictly positive.
For the case of the infimum, let z = x ∧ y and pick any b ∈ B. By Lemma 2.1, for n

sufficiently large, we have −nx ⩽ b ⩽ nx and −ny ⩽ b ⩽ ny. It follows directly that
b ⩽ (nx)∧(ny) = n(x∧y) = nz. Also, nx, ny ⩾ −b, so (nx)∧(ny) ⩾ −b, or −nz ⩽ b.
In particular, there exists an n ∈ N with −nz ⩽ b ⩽ nz. Applying Lemma 2.1 yields
z � 0. □

Theorem 2.3. Let G be an order-preserving concave self-map on P̊ . If

(i) for all x � 0, there exists a p � 0 such that p ⩽ x and Gp � p, and
(ii) for all x � 0, there exists a q � 0 such that x ⩽ q and Gq ⩽ q,

then G is globally stable on P̊ .

Proof. Fix x ∈ P̊ , which is nonempty by assumption. Choose p, q ∈ P̊ as in (i)–(ii)
above. Evidently G is an order-preserving concave self-map on [p, q]. By these facts,
the condition Gp � p and Theorem 3.1 of Du (1990), G has a unique fixed point x̄

in [p, q]. Since 0 � p ⩽ x̄, we have x̄ ∈ P̊ by Lemma 2.2.

Now pick any y ∈ P̊ . We claim that Gky → x̄ as k → ∞. To see this, we use
Lemma 2.2 to obtain y ∧ x̄ � 0, which means we can find c � 0 such that Gc � c
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and c ⩽ y ∧ x̄. In addition, y ∨ x̄ � 0, so we can take d � 0 such that Gd ⩽ d and
y ∨ x̄ ⩽ d. As a result,

c ⩽ y ∧ x̄ ⩽ y, x̄ ⩽ y ∨ x̄ ⩽ d.

In particular, both y and x̄ lie in [c, d]. Moreover, applying the same result of Du
(1990) again, we see that x̄ is the only fixed point of G in [c, d] and, moreover, Gky → x̄

as k → ∞.

We have now shown that x̄ is a fixed point of G in P̊ and Gky → x̄ for all y ∈ P̊ .
This implies that x̄ is the unique fixed point of G in P̊ . In particular, G is globally
stable on P̊ . □

In some instances G is defined over all of the positive cone P and we are concerned
about properties of G on the boundary of the cone. The next result provides condi-
tions on G that extend global stability to all of P \ {0}.

Theorem 2.4. Let G be an order-preserving concave self-map on P such that condi-
tions (i)–(ii) from Theorem 2.3 hold. If, in addition, for each nonzero x ∈ P , there
exists an m ∈ N such that Gmx � 0, then G is globally stable on P \ {0}.

Proof. First we note that G maps P̊ to itself. To see this, fix x ∈ P̊ and use (i) to
choose a p � 0 with p ⩽ x and Gp � p. By isotonicity of G we have Gx ⩾ Gp. Since
Gp ⩾ p � 0, it follows that Gx ∈ P̊ . In view of Theorem 2.3, G is globally stable
when restricted to P̊ , with unique fixed point x̄.

Now fix nonzero x ∈ P . Our proof will be complete if we can find an α ∈ (0, 1) and
an M < ∞ such that ‖Gkx− x̄‖ ⩽ αkM for all k ∈ N.

By hypothesis, we can choose an m ∈ N such that xm := Gmx � 0. Also, since G

is globally stable when restricted to P̊ , we can take a β ∈ (0, 1) and N < ∞ such
that ‖Gkxm − x̄‖ ⩽ βkN for all k ∈ N. Let ei = ‖Gix− xm‖ for i = 1, . . . ,m and let
e = maxi⩽m ei. If we set α := β and M := β−m max{N, e}, it is easy to verify that
‖Gkx − x̄‖ ⩽ αkM for all k ∈ N. We conclude that G is globally stable on P \ {0},
as claimed. □

Next we turn to the convex case.

Theorem 2.5. Let G be an order-preserving convex self-map on the positive cone P .
Suppose that
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(i) G0 � 0 and
(ii) for all x ∈ P̊ , there exists a b ∈ P such that x ⩽ b and Gb � b.

If these two conditions hold, then G is globally stable on P̊ .

Proof. Fix x ∈ P̊ and choose b ∈ P as in (ii) above. Since G is an order-preserving
convex self-map on [0, b] and Gb � b, Theorem 3.1 of Du (1990) implies that G

has a unique fixed point x̄ in [0, b]. Moreover, 0 ⩽ x̄, so isotonicity of G implies
0 � G0 ⩽ Gx̄ = x̄. Hence x̄ ∈ P̊ .

Now pick any y ∈ P̊ . We claim that Gky → x̄. Since y∨ x̄ ∈ P̊ , so we can take d ∈ P

such that Gd � d and y∨ x̄ ⩽ d. Note that 0 ⩽ y, x̄ ⩽ y∨ x̄ ⩽ d. In particular, y and
x̄ are in [0, d]. Applying the same result of Du (1990) again, this time to G on [0, d],
we see that x̄ is the only fixed point of G in [0, d] and, moreover, Gky → x̄. This last
result also implies that x̄ is the only fixed point of G in P̊ . Evidently G maps P̊ to
itself, so the proof is now done. □

3. Power-Transformed Affine Systems

In this section we apply the fixed point results of Section 2 to the class of nonlinear
equations discussed in the introduction. Below, in Section 4, we will discuss how
these problems arise in applications. Here we focus on characterizing existence and
uniqueness of positive solutions.

3.1. Environment. Returning to the system (2), we assume throughout that the
unknown object x takes values in the set C(T ) of continuous real-valued functions on
compact Hausdorff space T , and that A is a linear operator from C(T ) to itself. The
set C(T ) is a Banach lattice when paired with the supremum norm and the usual
pointwise partial order. In line with Section 2, we let P be the positive cone of C(T )

and P̊ be the interior of P . An ideal in C(T ) is a vector subspace I ⊂ C(T ) such
that g ∈ I and f ∈ C(T ) with |f | ⩽ |g| implies f ∈ I.

As in the introduction, powers are pointwise operations, so that xs is the function
T 3 t 7→ xs(t). For the powers in (2) to make sense we operate only on positive
elements of C(T ), as clarified below. Obviously, our treatment includes the finite-
dimensional case. (If T is finite with n elements, then we endow T with the discrete
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topology, in which case C(T ) is isometrically isomorphic to Rn and (2) can be viewed
as a system of n equations in Rn.)

A linear operator A : C(T ) → C(T ) is called positive if A is a self-map on P and
eventually compact if there exists a k ∈ N such that Ak is compact (i.e., maps the
unit ball of C(T ) to a relatively compact subset of C(T )). A positive linear operator
A is called irreducible if the only nontrivial closed ideal on which A is invariant is
the whole space C(T ). The spectral radius r(A) of A can be defined by Gelfand’s
formula r(A) = limk→∞ ‖Ak‖1/k, where ‖ · ‖ is the operator norm on the bounded
linear operators from C(T ) to itself.

3.2. Equivalency. Let A : C(T ) → C(T ) be a positive linear operator and suppose
b ∈ C(T ) and s ∈ R with s 6= 0 and b � 0. In studying (2), we also handle the
representation

y = ((Ay)1/s + b)s, (3)

which is obtained from (2) via the change of variable y = xs. The system (3) is often
easier to handle than the original system (2), largely because the transformation on
the right is decomposed into one purely linear operation (i.e., y 7→ Ay) and one
nonlinear operation.

We solve the power-transformed affine systems (2) and (3) by converting them into
fixed point problems associated with the self-maps F,G on P̊ defined by

Fx = (Axs)1/s + b and Gy = ((Ay)1/s + b)s

Let H be the homeomorphism from P̊ to itself defined by Hx = xs. Then F and G

are topologically conjugate under H, in the sense that H ◦ F = G ◦H. As a result,
F has a unique fixed point in P̊ if and only if the same is true for G, and, moreover,
fixed points of F and G have the same stability properties.

3.3. Positive Solutions. In what follows, if x ∈ P and x satisfies (2) then we call
x a positive solution to (2). If, in addition, x � 0, then we call x a strictly positive
solution. Analogous terminology is used for solutions to (3).

Theorem 3.1. Suppose b � 0 and s ∈ R with s 6= 0. If A is irreducible and
eventually compact, then the following statements are equivalent:

(i) r(A)s < 1.
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(ii) G is globally stable on P̊ .

Moreover, if r(A)s ⩾ 1, then G has no fixed point in P̊

As an immediate consequence, we have

Corollary 3.2. Under the conditions on A, b and s stated in Theorem 3.1, both (2)
and (3) have a unique strictly positive solution if and only if r(A)s < 1.

Remark 3.1. Since A is irreducible we have r(A) > 0 (see, e.g., Meyer-Nieberg
(2012), Lemma 4.2.9). Hence we can rewrite r(A)s < 1 as s · ln r(A) < 0. Thus,
condition (ii) is equivalent to the statement that r(A) 6= 1 and s and ln r(A) have
opposite signs.

3.4. Proof of Theorem 3.1. We assume throughout that the conditions on A, s

and b imposed in Theorem 3.1 hold.

Proposition 3.3. G is order-preserving on P̊ and has the following shape properties:

(i) G is concave on P̊ whenever s ∈ R \ [0, 1).
(ii) G is convex on P̊ whenever s ∈ (0, 1].

Proof. Fix t ∈ T and define

φt(r) :=
[
r1/s + b(t)

]s
(r > 0).

Then, for any y ∈ P̊ , (Gy)(t) can be written as φt[(Ay)(t)].

We first show that G is order-preserving. Since A is linear, irreducible (and hence
positive), A is order-preserving on C(T ). It is easy to see that φt is an increasing
function for all t ∈ T , so t ∈ T and y, z ∈ P̊ with y ⩽ z implies

(Gy)(t) = φt[(Ay)(t)] ⩽ φt[(Az)(t)] = (Gz)(t).

In particular, G is order preserving on P̊ .

To see that G is concave on P̊ when s < 0 or s ⩾ 1, we fix y, z ∈ P̊ and λ ∈ [0, 1] and
let h := λy + (1 − λ)z. Observe that φt is concave in this case for all t ∈ T . Hence,
fixing t ∈ T and using linearity of A,

φt[(Ah)(t)] = φt[λ(Ay)(t) + (1− λ)(Az)(t)]

⩾ λφt[(Ay)(t)] + (1− λ)φt[(Az)(t)].
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Hence (Gh)(t) ⩾ λ(Gy)(t) + (1 − λ)(Gz)(t). Since t ∈ T was arbitrary, we conclude
that G is concave on P̊ .

Similarly, (ii) follows from the fact that each φt is convex when s ∈ (0, 1]. □

Proposition 3.4. If G has a fixed point in P̊ , then r(A)s < 1.

Proof. Let M be the topological dual space for C(T ). Let A∗ be the adjoint operator
associated with A.3 Since A is irreducible and eventually compact, Lemma 4.2.11 of
Meyer-Nieberg (2012) ensures us existence of an e∗ ∈ M such that

〈e∗, x〉 > 0 for all x � 0 and A∗e∗ = r(A)e∗. (4)

Let ȳ be a fixed point of G in P̊ .

First consider the case where s > 0. In this case we have φt[y(t)] > y(t) for all y ∈ P̊

and t ∈ T , so
ȳ(t) = (Gȳ)(t) = φt[(Aȳ)(t)] > (Aȳ)(t).

Hence ȳ � Aȳ. Taking e∗ as in (4), we then have 〈e∗, Aȳ − ȳ〉 < 0, or, equivalently,
〈e∗, Aȳ〉 < 〈e∗, ȳ〉. Using the definition of the adjoint and (4) gives r(A)〈e∗, ȳ〉 =

〈A∗e∗, ȳ〉 = 〈e∗, Aȳ〉, so it must be that r(A)〈e∗, ȳ〉 < 〈e∗, ȳ〉. As a result, r(A) < 1.
Because s > 0, we have r(A)s < 1.

Now consider the case where s < 0. We have φt[y(t)] < y(t) for all y ∈ P̊ and t ∈ T .
As a result,

ȳ(t) = (Gȳ)(t) = φt[(Aȳ)(t)] < (Aȳ)(t).

But then, taking e∗ as in (4), we have 〈e∗, Aȳ − ȳ〉 > 0, or, equivalently, 〈e∗, Aȳ〉 >
〈e∗, ȳ〉. Using (4) again gives r(A)〈e∗, ȳ〉 = 〈e∗, Aȳ〉, so r(A)〈e∗, ȳ〉 > 〈e∗, ȳ〉. Hence
r(A) > 1. Because s < 0, this yields r(A)s < 1. □

Proposition 3.5. If r(A)s < 1, then, for each y ∈ P̊ , there exists a pair p, q ∈ P̊

such that p ⩽ y ⩽ q, Gp � p and Gq � q.

In the proof of Proposition 3.5, we set r := r(A). We use the fact that r > 0, and
that there eixsts a dominant eigenvector e ∈ P̊ such that Ae = r(A)e, as follows
from irreducibility and eventual compactness of A (see, e.g., Lemma 4.2.14 of Meyer-
Nieberg (2012).)

3The adjoint of a bounded linear operator A : C(T ) → C(T ) is given by A∗ : M → M such that
〈A∗µ, x〉 = 〈µ,Ax〉 for all x ∈ C(T ) and all µ ∈ M.
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Proof. Observe that, for each c ∈ (0,∞), we have
G(ce)

ce
=

(
(cre)1/s + b

(ce)1/s

)s

=

(
r1/s +

b

(ce)1/s

)s

.

Now consider the case where s < 0 and r > 1. Recall that T is compact and b � 0.
Then c → 0 implies that (G(ce))/(ce) → r uniformly, which in turn implies

∃ c0 > 0 and δ0 > 1 such that c ⩽ c0 =⇒ G(ce) ⩾ δ0ce. (5)

Also, if c → ∞, then (G(ce))/(ce) → 0 uniformly, which in turn implies

∃ c1 > 0 and δ1 < 1 such that c ⩾ c1 =⇒ G(ce) ⩽ δ1ce. (6)

Now suppose s > 0 and r < 1. In this case, c → 0 implies that (G(ce))/(ce) → ∞ uni-
formly, and hence (5) holds. Also, in the same setting, c → ∞ implies (G(ce))/(ce) →
r uniformly, and since r < 1 we have (6).

So far we have shown that (5) and (6) are both valid when rs < 1. Now fix y ∈ P̊ .
Since e, y � 0 and T is compact, we have ce � y for all sufficiently small c ∈ (0,∞).
Similarly, ce � y for all sufficiently large c. Combining these facts with (5) and (6),
we obtain p, q ∈ P̊ with p ⩽ y ⩽ q, Gp � p and Gq � q. □

Proof of Theorem 3.1. Let the conditions of Theorem 3.1 hold, in the sense that b �
0, s ∈ R \ {0} and A is irreducible and eventually compact. If s ∈ (0, 1] and
r(A) < 1, then G is order-preserving and convex on P̊ by Proposition 3.3. Moreover,
G0 = bs � 0 and, by Proposition 3.5, for each y ∈ P̊ there is a q ∈ P̊ such that y ⩽ q

and q � Gq. Hence, by Theorem 2.5, G is globally stable on P̊ .

If, on the other hand, s < 0 and r(A) > 1 or s ⩾ 1 and r(A) < 1, then G is order-
preserving and concave on P̊ by Proposition 3.3. Moreover, by Proposition 3.5, for
each y ∈ P̊ there is a pair p, q ∈ P̊ such that p ⩽ y ⩽ q, Gp � p and q � Gq. Hence,
by Theorem 2.3, G is globally stable on P̊ .

We have now shown that r(A)s < 1 implies G is globally stable on P̊ . For the
converse we apply Proposition 3.4, which tells us that G has no fixed point in P̊ when
r(A)s ⩾ 1. □

4. Applications

In this section we give several applications of the preceding results on power-transformed
affine systems.
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4.1. State-Dependent Discounting. Toda (2019) studies an optimal consumption
problem and shows that optimal consumption from current wealth w takes the form

c(z) = b(z)−1/γw

where γ > 0 is a parameter and b is a function of an uncertainty state z ∈ Z satisfying
the equation

b(z) =
{
1 +

[
β(z)R(z)1−γ(Qb)(z)

]1/γ}γ

. (7)

Here β(z) > 0 is the discount factor in state z, R(z) > 0 is the gross interest rate in
state z and Qb is defined at each z ∈ Z by

(Qb)(z) =
∑
z′∈Z

b(z′)q(z, z′),

where q is the transition matrix of an irreducible Markov chain. Toda (2019) shows
that (7) has a strictly positive solution if and only if the spectral radius of the linear
operator A defined by

(Af)(z) := β(z)R(z)1−γ
∑
z′∈Z

f(z′)q(z, z′) (8)

has a spectral radius less than unity. In the setting of Toda (2019), the set Z is finite.

We can prove the same result using Corollary 3.2, while also adding uniqueness.
Indeed, with A defined as in (8), we can express (7) as

b(z) =
{
1 + [(Ab)(z)]1/γ

}γ

. (9)

Since q is irreducible and β and R are strictly positive, the operator A is irreducible.
Eventual compactness of A is immediate from finiteness of Z. Hence Corollary 3.2
implies that (9) has a unique strictly positive solution if and only if r(A)γ < 1. Since
γ > 0, this reduces to r(A) < 1, which is the same condition used by Toda (2019).

Notice that Corollary 3.2 can also be used to relax the finiteness assumption on Z

by assuming instead that Z is a compact Hausdorff space. In this case continuity
restrictions need to be placed on β and R.

4.2. Recursive Preferences. In finance, Epstein–Zin preferences have become in-
creasingly important for specifying and solving mainstream asset pricing models (see,
e.g., Hansen and Scheinkman (2012), Bansal et al. (2012), Schorfheide et al. (2018)
or Gomez-Cram and Yaron (2021)). Similar specifications have also been adopted in
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macroeconomics (see, e.g., Basu and Bundick (2017)). A generic specification takes
the form

v = ((1− β)cρ + β(Rv)ρ)1/ρ (10)

where c ∈ P̊ ⊂ C(T ) denotes consumption in each state and ρ and β are positive
parameters. The operator R is defined at v ∈ P̊ by Rv = (Qvα)1/α, where α is a
nonzero parameter and Q is an irreducible Markov operator. The unknown function
v gives lifetime utility at each state of world.

It is known (see, e.g., Borovička and Stachurski (2020)) that (10) has a unique positive
solution if and only if β < 1. This result can be derived from our results by setting
w = vα, s = α/ρ, and rewriting (10) as

w =
{
(1− β)cρ + β(Qw)ρ/α

}α/ρ
=

{
(1− β)cρ + (βsQw)1/s

}s
.

By Corollary 3.2, a unique strictly positive solution exists if and only if the linear
operator A := βsQ is such that r(A)s < 1, which can also be written as r(A)1/s < 1.
Since Q is a Markov operator we have r(Q) = 1, and hence r(A)1/s < 1 if and only if
β < 1.

4.3. Wealth-Consumption Ratio. Another important object in asset pricing is the
wealth-consumption ratio of the representative agent. In a similar environment to the
one described above, the equilibrium wealth-consumption ratio w under Epstein-Zin
preferences satisfies the following first-order condition

βsQws = (w − 1)s, (11)

where the operator Q is assumed to be an irreducible and eventually compact linear
operator that contains information about consumption growth. Letting A := βsQ,
we can rewrite (11) as

w = (Aws)1/s + 1,

which has the same form as (2). By Corollary 3.2, a unique strictly positive wealth-
consumption ratio exists if and only if the linear operator A satisfies r(A)s < 1, or
equivalently, βr(Q)1/s < 1.
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4.4. Growth with CES Production Function. Consider a discrete time multi-
sector growth model with total depreciation and no population growth or technologi-
cal progress. The law of motion for the capital-labor ratio is given by kt+1 = sf(Akt),
where s is a savings rate, f is a CES production function, A is an irreducible ma-
trix that characterizes the technology, and kt is a vector of multi-sector capital-labor
ratios. Then the steady state capital-labor ratio satisfies

k = s {θ + (1− θ)(Ak)ρ}1/ρ , (12)

where θ ∈ (0, 1), ρ 6= 0, and all algebraic operations are performed elementwise. We
can rewrite (12) as

k =
{
sρθ +

(
s(1− θ)1/ρAk

)ρ}1/ρ

.

Then by Corollary 3.2, a unique and strictly positive vector of multi-sector capital-
labor ratios exists in the steady state if and only if sρ(1− θ)r(A) < 1.
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