Coase Meets Bellman: Dynamic Programming for Production Networks

Tomoo Kikuchi Kazuo Nishimura John Stachurski Junnan Zhang

April 14, 2021

Coase Meets Bellman

Kikuchi et al.

Introduction

General Theory

Negative Discount DF

Applications

Continuous-Time Theory

References

1/29

Outline

Coase Meets Bellman

Kikuchi et al.

Introduction

eneral Theory

Negative Discount DP

Applications

Continuous-Time Theory

References

Introduction

General Theory

Negative Discount DP

Applications

Continuous-Time Theory

$$v^*(\hat{x}) := \min_{\{a_t\}} \sum_{t=0}^{\infty} \beta^t \ell(a_t)$$

s.t. $\sum_{t=0}^{\infty} a_t = \hat{x}, \ a_t \ge 0$

- The agent takes action a_t in period t and suffers loss $\ell(a_t)$
- Assume that $\beta > 1$, $\ell(0) = 0$, $\ell' > 0$, and $\ell'' > 0$
- It doesn't help to transform it to a maximization problem

$$\max_{\{a_t\}} \sum_{t=0}^{\infty} \beta^t (-\ell(a_t))$$

Lagrange multipliers?

Coase Meets Bellman

Kikuchi et al.

Introduction

eneral Theory

Negative Discount DF

Applications

Continuous-Time Theory

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

 $v^*(\hat{x}) := \min_{\{a_t\}} \sum_{t=0}^{\infty} \beta^t \ell(a_t)$ s.t. $\sum_{t=0}^{\infty} a_t = \hat{x}, \ a_t \ge 0$

Set
$$x_0 = \hat{x}$$
 and $x_{t+1} = x_t - a_t$

Does v* satisfy the Bellman equation?

$$v(x) = \min_{0 \le a \le x} \left\{ \ell(a) + \beta v(x - a) \right\}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

- Why study the Bellman equation?
 - 1. Use results from dynamic programming
 - 2. Different economic interpretations

Coase Meets Bellman

Kikuchi et al.

Introduction

eneral Theory

Negative Discount DF

Applications

Continuous-Time Theory

Outline

Coase Meets Bellman

Kikuchi et al.

Introductior

General Theory

legative Discount DP

Applications

Continuous-Time Theory

References

Introduction

General Theory

Negative Discount DP

Applications

Continuous-Time Theory

An Abstract Dynamic Program

A dynamic program consists of

- 1. State space X
- 2. Action space A
- 3. Feasible correspondence $\Gamma(x) \subset A$
- 4. Continuation aggregator H(x, a, v)

The Bellman equation is

$$v(x) = (Tv)(x) := \inf_{a \in \Gamma(x)} H(x, a, v)$$

• Example: $X = A = [0, \hat{x}], \Gamma(x) = [0, x], \text{ and}$

$$H(x, a, v) = \ell(a) + \beta v(x - a)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Coase Meets Bellman

Kikuchi et al.

ntroductior

General Theory

legative Discount DF

Applications

Continuous-Time Theory

Assumptions:

- 1. H(x, a, v) is increasing and concave in v
- 2. There exist ϕ, ψ such that T is a self-map on $[\phi, \psi]$
- 3. Other technical conditions

Theorem

T has a unique fixed point $\bar{v} \in [\phi, \psi]$, $T^n v \to \bar{v}$ for all $v \in [\phi, \psi]$, and $\bar{\sigma}(x) := \arg \min_{a \in \Gamma(x)} H(x, a, \bar{v})$ is upper hemicontinuous. Under additional assumptions, \bar{v} is increasing, convex, and continuously differentiable on int *X* and $\bar{v}'(x) = H_x(x, \bar{\sigma}(x), \bar{v})$.

Coase Meets Bellman

Kikuchi et al.

ntroduction

General Theory

Negative Discount DF

Applications

Continuous-Time Theory

Definitions

• Any σ corresponds to a policy operator

$$(T_{\sigma}v)(x) := H(x, \sigma(x), v)$$

For a sequence of feasible policies $\pi = (\sigma_0, \sigma_1, ...)$, define the π -value function

$$w_{\pi}(x) = \lim_{n \to \infty} (T_{\sigma_0} T_{\sigma_1} \dots T_{\sigma_n} \phi)(x)$$

- The value function is $v^*(x) := \inf_{\pi} v_{\pi}(x)$
- The optimal policy π^* is such that $v^* = v_{\pi^*}$
- Stationary policies (σ, σ, \ldots)

Coase Meets Bellman

Kikuchi et al.

Introduction

General Theory

Negative Discount DF

Applications

Continuous-Time Theory

Optimality

Assumptions:

1. If
$$v_n \uparrow v$$
, $H(x, a, v_n) \rightarrow H(x, a, v)$

2. There exists
$$\beta > 0$$
 such that for all $r > 0$

$$H(x, a, v + r) \leq H(x, a, v) + \beta r$$

Theorem

The value function solves the Bellman equation and $v^* = \bar{v}$. There exists a stationary optimal policy σ^* and $\sigma^* = \bar{\sigma}$.

Coase Meets Bellman

Kikuchi et al.

ntroduction

General Theory

Negative Discount DF

Applications

Continuous-Time Theory

Outline

Introduction

General Theory

Negative Discount DP

Applications

Continuous-Time Theory

Coase Meets Bellman

Kikuchi et al.

ntroduction

General Theory

Negative Discount DP

Applications

Continuous-Time Theory

Negative Discount Dynamic Programming

Recall that $x_{t+1} = x_t - a_t$ and $x_0 = \hat{x}$. We aim to find σ^* such that $a_t^* = \sigma^*(x_t)$ solves

$$v^*(\hat{x}) := \min_{\{a_t\}} \sum_{t=0}^{\infty} \beta^t \ell(a_t) \quad \text{ s.t. } \sum_{t=0}^{\infty} a_t = \hat{x}, \ a_t \ge 0$$

Let $\phi(x) = \ell'(0)x$ and $\psi(x) = \ell(x)$

Theorem

1. v^* is a fixed point of the Bellman operator

$$(\mathcal{T}v)(x) := \inf_{0 \le a \le x} \{\ell(a) + \beta v(x-a)\}$$

and $\mathcal{T}^n v \to v^*$ for all $v \in [\phi, \psi]$

Coase Meets Bellman

Kikuchi et al.

Introduction

eneral Theory

Negative Discount DP

Applications

Continuous-Time Theory

References

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Theorem (cont.)

2. There is a unique optimal policy given by

$$\sigma^*(x) = \operatorname*{arg\,min}_{0 \le a \le x} \left\{ \ell(a) + \beta v^*(x-a) \right\},$$

and σ^* is increasing

- 3. v^* is strictly increasing, strictly convex, and continuously differentiable on $(0, \hat{x})$ with $(v^*)'(x) = \ell'(\sigma^*(x))$
- 4. $\{a_t^*\}$ is decreasing and satisfies

$$\ell'(a_{t+1}^*) = \max\left\{\frac{1}{\beta}\ell'(a_t^*), \ell'(0)\right\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Coase Meets Bellman

Kikuchi et al.

ntroduction

eneral Theory

Negative Discount DP

Applications

Continuous-Time Theory

Negative Discount Dynamic Programming

Theorem

When $\ell'(0) = 0$, $\{a_t^*\}$ is optimal if and only if $\beta \ell'(a_{t+1}^*) = \ell'(a_t^*)$. The sequence is unique, decreasing, and strictly positive. Furthermore, $v^* = Tv^*$.

To solve the Bellman equation:

- If $\ell'(0) > 0$, we use the Bellman operator directly
- If $\ell'(0) = 0$, we use the Euler equation

Coase Meets Bellman

Kikuchi et al.

Introduction

Seneral Theory

Negative Discount DP

Applications

Continuous-Time Theory

References

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Outline

Introduction

General Theory

Negative Discount DP

Applications

Continuous-Time Theory

Coase Meets Bellman

Kikuchi et al.

Introductior

General Theory

Negative Discount DP

Applications

Continuous-Time Theory

Reinterpretation

► Time index → an index over decision making entities

► Tasks are completed sequentially

total cost for agent 1

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

total cost for agent
$$0 = \ell(a_0) + \beta \left[\ell(a_1) + \beta \left(\underbrace{\ell(a_2) + \beta(\ldots)}_{\text{total cost for agent 2}} \right) \right]$$

A social planner's problem

$$v^*(\hat{x}) := \min_{\{a_t\}} \sum_{t=0}^{\infty} \beta^t \ell(a_t) \quad \text{ s.t. } \sum_{t=0}^{\infty} a_t = \hat{x}, \ a_t \ge 0$$

A decentralized problem

$$v^*(x) := \min_{0 \le a \le x} \{\ell(a) + \beta v^*(x-a)\}$$

Coase Meets Bellman

Kikuchi et al.

Introductior

eneral Theory

legative Discount DP

Applications

Continuous-Time Theory

- Competitive market with price-taking firms indexed by i
- Produce a unit of good: implementing a sequence of tasks
- The allocation of tasks $\{a_i\}$ satisfies $\sum_i a_i = 1$
- Define firm boundaries: $b_0 = 1$ and $b_{i+1} = b_i a_i$
- Profits of the *i*th firm are

$$\pi_i = p(b_i) - c(a_i) - (1 + \tau)p(b_{i+1})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

where p is price, c is production cost, and τ is transaction cost

Coase Meets Bellman

Kikuchi et al.

Introduction

General Theory

Negative Discount DF

Applications

Continuous-Time Theory

Production Chains

Kikuchi et al. (2018)

Definition

The pair $(p, \{a_i\})$ is called an *equilibrium* for the production chain if

1.
$$\pi_i = 0$$
 for all *i*.

2.
$$p(s) - c(s - t) - (1 + \tau)p(t) \le 0$$
 for any pair s, t with $0 \le t \le s \le 1$, and

Theorem

Let $\hat{x} = 1$, $\ell = c$, and $\beta = 1 + \tau$. Then, $(v^*, \{a_i^*\})$ is an equilibrium for the production chain.

Coase Meets Bellman

Kikuchi et al.

Introductior

General Theory

Negative Discount DP

Applications

Continuous-Time Theory

- An alternative theory of city size distribution (Hsu, 2012; Hsu et al., 2014)
- Cities are built to host a continuum of dwellers of measure one
- A government opens competition for city developers
- Each developer builds a city of a certain size and pays other developers to build "satellite cities"
- Layers of cities are formed indexed by i
- Price function p, building cost c, tax rate τ

Coase Meets Bellman

Kikuchi et al.

Introduction

General Theory

Negative Discount DF

Applications

Continuous-Time Theory

References

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Coase Meets Bellman

Kikuchi et al.

Introduction

Seneral Theory

Negative Discount DP

Applications

Continuous-Time Theory

References

A developer assigned to host s dwellers maximizes profits

 $\max_{0 \le t \le s} \{ p(s) - c(s-t) - (1+\tau)kp(t/k) \}$

The equilibrium price function satisfies

$$p(s) = \min_{0 \le t \le s} \{ c(s-t) + (1+\tau)kp(t/k) \}$$

• Let $c(s) = s^{\gamma}$ with $\gamma > 1$ and let k = 2

Coase Meets Bellman

Kikuchi et al.

ntroduction

Seneral Theory

Negative Discount DP

Applications

Continuous-Time Theory

References

- The Euler equation: $c'(a_i^*) = (1 + \tau)c'(a_{i+1}^*)$
- If $\theta := (1 + \tau)^{1/(1-\gamma)} < 1/2$, then $a_i^* = \theta^i (1 2\theta)$ and $v^*(s) = (1 2\theta)^{\gamma-1} s^{\gamma}$

▶ $p = v^*$ solves the Bellman equation and is an equilibrium price

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Figure 1: Illustration of optimal city hierarchy.

The size distribution follows a power law:

$$\ln(Rank) = -\frac{\ln(1/2)}{\ln(\theta)}\ln(Size) + C$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Coase Meets Bellman

Kikuchi et al.

ntroduction

eneral Theory

legative Discount DP

Applications

Continuous-Time Theory

References

21/29

Knowledge and Communication

- Hierarchical organization of knowledge (Garicano, 2000)
- A firm requires employees solve a set of problems [0, 1]
- A market for knowledge among management layers
- ▶ The *i*th layer is assigned m_i , learns to solve z_i at cost $c(z_i)$ and passes on the remainder $m_{i+1} = m_i z_i$ to layer i + 1
- Price function p, communication cost τ

Coase Meets Bellman

Kikuchi et al.

Introduction

General Theory

Negative Discount DF

Applications

Continuous-Time Theory

References

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Knowledge and Communication

The profits of the *i*th layer

$$\pi_i = p(m_i) - c(z_i) - (1 + \tau)p(m_i - z_i)$$

The equilibrium price satisfies

$$p(m_i) = \min_{0 \le m_{i+1} \le m_i} \{ c(m_i - m_{i+1}) + (1 + \tau) p(m_{i+1}) \}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Assume that *n* employees can solve f(n). Then $c(z) = wf^{-1}(z)$.

▶ $\{z_i\}$ is decreasing, so $\{n_i\}$ is decreasing

Coase Meets Bellman

Kikuchi et al.

ntroduction

Seneral Theory

Negative Discount DF

Applications

Continuous-Time Theory

Knowledge and Communication

Figure 2: Optimal organizational structures.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Coase Meets Bellman Kikuchi et al. Introduction General Theory

Applications

Continuous-Time Theory

Outline

Introduction

General Theory

Negative Discount DP

Applications

Continuous-Time Theory

Coase Meets Bellman

Kikuchi et al.

Introduction

Seneral Theory

Negative Discount DP

Applications

Continuous-Time Theory

An agent takes actions $a(\cdot)$

$$v^{*}(\hat{x}) = \min_{a(t)} \int_{0}^{\infty} e^{\rho t} \ell(a(t)) dt$$

s.t.
$$\int_{0}^{\infty} a(t) dt = \hat{x}$$
$$a(t) \ge 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• Assume that
$$ho >$$
 0, $\ell(0) =$ 0, $\ell' >$ 0, and $\ell'' >$ 0

• Define
$$x(t) = \hat{x} - \int_0^t a(s) ds = \int_t^\infty a(s) ds$$

Coase Meets Bellman

Kikuchi et al.

ntroduction

ieneral Theory

Negative Discount DF

Applications

Continuous-Time Theory

References

26 / 29

Theorem

1. The unique optimal solution is

$$a^*(t) = \operatorname*{arg\,min}_{a \ge 0} \left\{ e^{
ho t} \ell(a) + \lambda a \right\}$$

where λ is a constant uniquely determined by $\int_0^\infty a^*(t)dt = \bar{x}$.

2. $v^*(x)$ is differentiable when x > 0 and satisfies

$$-\rho v^*(x) = \inf_{a \ge 0} \left\{ \ell(a) - (v^*)'(x)a \right\}$$

with boundary condition $v^*(0) = 0$

3. The optimal action a^* at state x satisfies

$$-\rho v^*(x) = \inf_{a>0} \left\{ \ell(a) - (v^*)'(x)a \right\} = \ell(a^*) - (v^*)'(x)a^*$$

Coase Meets Bellman

Kikuchi et al.

ntroduction

Seneral Theory

Negative Discount DP

Applications

Continuous-Time Theory

Theorem (cont.)

4. The optimal action $a^*(t)$ is decreasing in t

Figure 3: Optimal action and optimal state path

Coase Meets Bellman

Kikuchi et al.

Introduction

General Theory

Negative Discount DP

Applications

Continuous-Time Theory

References

- Garicano, L. (2000): "Hierarchies and the organization of knowledge in production," *Journal of Political Economy*, 108, 874–904.
- Hsu, W.-T. (2012): "Central place theory and city size distribution," *The Economic Journal*, 122, 903–932.
- Hsu, W.-T., T. J. Holmes, and F. Morgan (2014): "Optimal city hierarchy: A dynamic programming approach to central place theory," *Journal of Economic Theory*, 154, 245–273.
- Kikuchi, T., K. Nishimura, and J. Stachurski (2018): "Span of control, transaction costs, and the structure of production chains," *Theoretical Economics*, 13, 729–760.

Coase Meets Bellman

Kikuchi et al.

Introduction

eneral Theory

Negative Discount DF

Applications

Continuous-Time Theory

References

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@