
1 Introduction

In 2020 the Federal Reserve adopted a new strategy for monetary policy that officials have

called “average inflation targeting,” or AIT. The strategy is focused on a 2% target for

the inflation rate, but it does not always seek to hit that target in the short run. Instead,

according to the official statement of the strategy, “following periods when inflation has

been running persistently below 2 percent, appropriate monetary policy will likely aim to

achieve inflation moderately above 2 percent for some time”(Federal Reserve 2020). This

intentional overshooting is a departure from conventional inflation targeting, in which

policymakers always aim for 2% inflation, regardless of history.

When the new strategy was announced, Fed officials outlined their rationale in several

speeches, which emphasized the interplay of two factors: the effective lower bound [ELB]

on interest rates, and the need to anchor inflation expectations at 2%. The ELB leads

to periods when inflation is stuck below 2%, and therefore, as Vice Chair Clarida (2020)

reasoned,

[I]f policy seeks only to return inflation to 2 percent following a downturn in which

the ELB has constrained policy, an inflation-targeting monetary policy will tend to

generate inflation that averages less than 2 percent, which, in turn, will tend to put

persistent downward pressure on inflation expectations.

According to Chair Powell (2020), the economy could fall into an “adverse cycle of ever-

lower inflation and inflation expectations” that would destabilize the economy. Periods

with inflation above 2% are needed to achieve an average of 2% and keep expectations

anchored.

A sizable body of research has studied the properties of average inflation targeting.

This work includes analyses of New Keynesian macroeconomic models such as Mertens

and Williams (2019, 2020) and Budianto, Nakata, and Schmidt (2023), and simulations of

the Federal Reserve’s FRB/US model such as Arias et al. (2020) and Hebden et al. (2020).

This work has helped to clarify the conditions under which AIT is effective at stabilizing

the economy, and it has shed light on the optimal size and duration of inflation-target
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overshoots. This paper seeks to contribute to this literature.1

Specifically, we seek the simplest possible model that captures the factors that policy-

makers cite when they advocate AIT. The model is a variation on the “backward-looking”

macro model of the Romer (2019) textbook in which we introduce the lower bound on

interest rates and assume that expected inflation is anchored at 2% if inflation averages 2%.

Our model complements other macro models that have the virtues of firmer microeconomic

foundations and/or greater quantitative realism, but at the cost of greater complexity.

We aim for an analysis that is more formal and rigorous than a speech by a Fed official,

yet more transparent than a typical study of optimal monetary policy.

We consider two versions of our model. In the first, expectations are fully anchored: if

the central bank produces 2% inflation on average, then expected inflation is constant at

2%. For that case, we prove the optimality of a simple policy rule: whenever the central

bank is not constrained by the ELB, it aims for a short-run inflation target that is constant

and exceeds 2%. The reason for targeting inflation above 2% is the one given in practice

by Fed officials: to offset periods when the ELB pushes inflation below 2%. (While our

result is simple, the proof of optimality is non-trivial because of the non-linearity in the

model arising from the ELB.)

In the second version of the model, anchoring is imperfect: expected inflation responds

somewhat to fluctuations in actual inflation. That case is more complex and must be

analyzed numerically. Once again, optimal policy often aims at a short-run inflation target

above 2%, but this target varies over time. For some parameter values, the short-run target

is highest after an episode of low inflation and falls after that. This feature of optimal

policy bears some resemblance to the Fed’s actual strategy, which aims for temporarily

high inflation after a period with inflation below 2%.

1Other work on AIT includes Nessén and Vestin (2005), Amano et al. (2020), Eo and Lie (2020), and
Honkapohja and McClung (2024).
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2 The Model

This section presents our model and the problem facing policymakers.

2.1 The IS and Phillips Curves

Our assumptions about output and inflation behavior follow Romer (2019, Chapter 12),

which draws on Svensson (1997) and Ball (1999):

yt = λyt−1 − β(rt−1 − r∗) + ϵt, 0 < λ < 1, β > 0 (1)

rt = it − πe
t (2)

πt = πe
t−1 + αyt−1 + ηt, α > 0 (3)

where y is the output gap (the percentage deviation of output from potential), i and r are

the nominal and real interest rates, r∗ is the neutral real rate, πe is expected inflation, and

ϵ and η are shocks with mean zero and bounded distributions: ϵ ∈ [−ϵ̄, ϵ̄] and η ∈ [−η̄, η̄]

for some ϵ̄, η̄ > 0.

In this backward-looking model, equation (1) is a dynamic IS equation: output depends

on lagged output, the lagged real interest rate, and a demand shock. Equation (2) is the

definition of the real interest rate. Equation (3) is a Phillips curve: inflation depends on

lagged expected inflation (capturing the idea that current prices were set in advance),

lagged output, and an inflation or supply shock.

Under these assumptions, the real interest rate affects output with a one-period lag, and

output affects inflation with a one-period lag. Combining these lags, it takes two periods

for an interest-rate adjustment by the central bank to affect inflation; thus policymakers in

period t can set an inflation target for t+ 2 but not for t or t+ 1. If we interpret a period

as a year, the model’s time lags are roughly consistent with those found in empirical work

(e.g., Romer and Romer 2004).

3



2.2 The Behavior of Expectations

Analyses of equations (1)–(3), such as Romer’s, often complete the model by assuming

that inflation expectations are static: πe
t = πt. In that case, equation (3) becomes a

relation between the output gap and the change in inflation—an accelerationist Phillips

curve—and the real interest rate is the nominal rate minus current inflation. However,

while this treatment of expectations was arguably realistic in the past, there is a growing

consensus that the Fed’s commitment to a 2% inflation target has anchored expectations

at that level (e.g., Yellen 2019). We therefore assume that expectations are anchored.

We consider two versions of anchored expectations. In the first, full anchoring, we

assume that the central bank has announced a long run inflation goal of 2% and committed

itself to producing 2% on average. As a result, expected inflation is fixed at that level:

FULLY ANCHORED EXPECTATIONS

πe
t = 2 for all t. (4)

In the second version of our assumption, the central bank has again announced a

2% goal, but anchoring is not perfect: expected inflation deviates somewhat from 2% in

response to movements in actual inflation. Specifically:

PARTIALLY ANCHORED EXPECTATIONS

πe
t = γ(2) + (1− γ)πt 0 ≤ γ ≤ 1. (5)

Here, expected inflation is a weighted average of 2% and the current inflation rate.

The parameter γ indicates how strongly expectations are anchored. When γ = 0, the

specification reduces to static expectations.

Some research suggests that fully anchored expectations are a good approximation to

reality since the 1990s (e.g., Blanchard 2016). Other work, however, finds that movements

in actual inflation have had some effect on expected inflation (e.g., Ball, Leigh, and Mishra

2022).

The variable πe
t is a subjective expectation of price setters, and is not necessarily

rational. In what follows, we also derive mathematical expectations of inflation, using
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standard notation. For example, E[π] is the unconditional mean of the inflation rate, and

Et[πt+1] is the expected value of inflation at t+ 1 conditional on information at t.

2.3 The Policy Problem

We take it as given that the central bank has chosen 2% as its long run inflation goal

and committed to achieving the goal on average. Therefore, in considering alternative

policy rules, we restrict attention to rules under which E[π], the unconditional expectation

of the inflation rate, equals 2%. This restriction on policy underlies our assumption of

anchored expectations; as stressed by Fed officials, it would be implausible to assume that

expectations are anchored at 2% if average inflation differed from 2%.

Presumably the 2% goal was chosen based on an analysis of the costs and benefits of

different levels of inflation, but we do not model this decision. Instead, we ask what rule

among the class that produces 2% average inflation is best at stabilizing the economy. In

assuming rather than deriving a 2% goal, we follow the formal strategy review that led

the Fed to adopt AIT. In introducing the review, Vice Chair Clarida (2019) noted that

Congress has assigned goals including price stability to the Fed, and said: “Our review this

year will take this statutory mandate as given and will also take as given that inflation at a

rate of 2 percent is most consistent over the longer run with the Congressional mandate.”

Policymakers choose a rule for setting the nominal interest rate it as a function of the

state of the economy Ωt. There is an effective lower bound on it, which we set to zero

for simplicity. For technical reasons, we also impose an upper bound on it, i
−, which is

arbitrarily large. This bound is never binding under the optimal policy that we derive.

(The upper bound on it makes it easier to apply dynamic programming methods to our

policy problem.)2

The central bank chooses the rule it(Ωt) to minimize a weighted sum of the variances

of output and inflation. Policymakers face two kinds of constraints: the restriction that

2In proving our results about optimal policy, we show that they hold as long as i− is set above a
certain level that depends on the model’s parameters.
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E[π] = 2, and the bounds on it. We can write the policy problem as:

min
it(Ωt)

(1− µ)Var(y) + µVar(π), 0 ≤ µ ≤ 1

s.t. E[π] = 2

0 ≤ it ≤ i− for all t

The parameter µ determines the weights on output and inflation variances.

2.4 Optimal Inflation Targeting

In the above policy problem, the central bank’s instrument is the interest rate it. However,

given the current state of the economy, the IS equation implies a negative, one-to-one

relationship between it and Et[yt+1], the expectation of output in the next period. This fact

and the Phillips curve imply a negative, one-to-one relationship between it and Et[πt+2],

the expectation of inflation in two periods. Therefore, following Romer, we can reinterpret

the policy problem in period t as the choice of an inflation target for t+ 2: π̂t = Et[πt+2].

A rule for this target implicitly defines an interest-rate rule that implements it.

The restriction of it to [0, i−] implies that the inflation target π̂t is restricted to a range

[πt, π̄t]. Since the relation between it and πt is negative, the lower bound πt is the level of

π̂t when it = i−, and the upper bound π̄t is the level when it = 0. The bounds on π̂t vary

over time because expected inflation depends on the state of the economy as well as on

it. The lower bound on π̂t never binds under optimal policy. Expressions for the upper

bound are derived below for the cases of full and partial anchoring.

The policymaker chooses a rule for the inflation target, π̂t(Ωt), to minimize the loss

function given the bounds on π̂t and the restriction on average inflation:

min
π̂t(Ωt)

(1− µ)Var(y) + µVar(π), 0 ≤ µ ≤ 1

s.t. E[π] = 2

π(Ωt) ≤ π̂t ≤ π̄(Ωt) for all t
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3 Optimal Policy with Full Anchoring

For the case of full anchoring, the optimal policy is simple to state:

Proposition 1. With fully anchored expectations, the optimal rule for the short-run

inflation target is π̂t = min{π∗, π̄t} , where π∗ is a constant and π∗ > 2%.

This result is proved in the Appendix. It says that the central bank targets a fixed

inflation rate π∗ > 2% whenever that is feasible. When π∗ exceeds the upper bound π̄t,

the central bank targets π̄t.

This result should make sense. The bound π̄t is sometimes below 2%, so the target π̂t

must sometimes be below 2%. To satisfy the constraint that average inflation equals 2%,

π̂t must sometimes exceed 2%. Many specific policies would satisfy the constraint, but

the one that best stabilizes the economy is to set π̂t equal to the constant π∗ or as close

to π∗ as possible. The value of π∗ is defined by the constraint on average inflation and

can be derived numerically.

While the optimal policy is simple to state, the proof of Proposition 1 is non-trivial

because of the non-linearity arising from the bound on π̂t and also because of the

unconventional constraint on average inflation. In the proof, we first consider a dynamic

programming problem in which policymakers minimize the discounted losses from output

and inflation fluctuations, and then let the discount factor approach one to find the

solution to our undiscounted problem. We impose the constraint on average inflation by

adding a penalty on the level of inflation to the dynamic programming problem.

We can better understand the optimal policy by deriving the upper bound on the

inflation target, π̄t. This bound is the expectation of inflation at t+ 2 if the interest rate

it is set at its lower bound of zero. From equations (1)–(3) and the assumption of fully

anchored expectations, we derive:

π̄t = C + αλyt, (6)

where the constant C = 2 + αβ(2 + r∗). Equation (6) says that π̄t depends positively on
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Figure 1: Optimal Policy with Full Anchoring
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the output gap yt. A higher yt loosens the bound on the inflation target because it raises

future output and inflation through the IS equation and Phillips curve.3

Our results determine the inflation target π̂t as a function of yt, as shown in Figure 1(a).

When yt is low (which occurs when there are adverse shocks to the IS equation), the

bound π̄t is binding. In that regime, the inflation target is increasing in yt because the

bound is increasing in yt. When yt is above a critical level (specifically, (π∗ −C)/αλ), the

bound exceeds π∗ and the target is set at π∗.

3With fully anchored expectations, substituting it = 0 into the IS equation yields Et[yt+1] =
λyt + β(r∗ + 2). Substituting that equation into the Phillips curve yields Et[πt+2] when it = 0, which is
the expression in equation (6).
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We can also derive the interest-rate rule that implements optimal inflation targeting:

it = max{i∗t , 0} (7)

where i∗t is the interest rate such that π̂t = Et[πt+2] = π∗. The policymaker sets it = i∗t

when i∗t ≥ 0 and it = 0 when i∗t < 0, which keeps it as close as possible to i∗t and π̂t as

close as possible to π∗. We can derive i∗t from equations (1)–(3) and the assumption of

full anchoring:

i∗t = C ′ +
λ

β
yt (8)

where C ′ = 2 + r∗ + (2− π∗)/(αβ).

Figure 1(b) shows the optimal interest rate as a function of yt. When yt is low, policy

is constrained by the zero bound. When policy is unconstrained, it is increasing in yt: a

higher yt implies a higher Et[πt+2] for a given it, so a higher it is needed to offset this

effect and keep Et[πt+2] at π
∗.

Notice that the optimal interest rate does not depend on the inflation rate. This result

reflects the assumption of fully anchored expectations, which implies that current inflation

has no effect on future inflation.

4 Optimal Policy with Partial Anchoring

This section considers our model with imperfectly anchored expectations: expected

inflation is an average of the 2% target and current inflation. We generalize the proposition

about optimal policy and then analyze the model numerically to learn more.

4.1 Optimal Policy

In what follows, an important variable is Et[πt+1], the expectation of inflation in the next

period. To simplify notation, we denote this variable byXt. In period t, when policymakers

chooses an inflation target π̂t, they take Xt as given because they cannot affect inflation

until t+ 2. Using the Phillips curve (3) and the partial anchoring assumption (5), we can
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write Xt in terms of current output and inflation:

Xt = Et[πt+1] = 2γ + (1− γ)πt + αyt. (9)

With this notation, we can establish the following about optimal policy (this result is

proved in the Appendix):

Proposition 2. With partially anchored expectations and γ > αβ/(αβ + 1 − λ), the

optimal rule for the short-run inflation target is π̂t = min{π∗(Xt), π̄t} for some function

π∗(·), and π∗(Xt) > 2 for some Xt.

Notice first that the Proposition applies only if the degree of anchoring γ (the weight

on the inflation target in the equation for πe
t ) exceeds a bound of αβ/(αβ + 1 − λ). If

anchoring is weak enough that this condition fails, we cannot rule out the possibility

that a very bad sequence of shocks will send the economy into a disinflationary spiral in

which falling output and expected inflation reinforce each other forever. In this case, no

policy rule produces finite variances of output and inflation. When the restriction on γ

holds, however, expectations are pulled toward 2% strongly enough that policy can make

inflation and output stationary.4

When the bound on γ is satisfied, the optimal policy is a variation on the one under

full anchoring. The inflation target π̂t is the minimum of the bound π̄t and a level π∗ that

policymakers choose if unconstrained. This level must sometimes or always exceed 2% to

offset periods when the bound pushes π̂t below 2%.

The major difference from the full-anchoring case is that π∗, the target when policy-

makers are unconstrained, is no longer a constant. Instead it is a function of the state of

the economy, in particular Xt = Et[πt+1].

Current output and inflation affect the inflation target through Xt. They also affect

the bound that constrains the target. Using equations (1)–(3) and (5), and setting it = 0,

4When economists study models with a lower bound on interest rates, they often rule out disinflationary
spirals by assuming that sufficiently adverse outcomes trigger an emergency fiscal stimulus (e.g., Kiley and
Roberts 2017). If emergency fiscal policy were added to our model, one could derive optimal monetary
policy without any restriction on the degree of anchoring.
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we can derive:

π̄t = [α(λ+ 1− γ)]yt + [(1− γ)(αβ + 1− γ)]πt + C ′′ (10)

where C ′′ = αβr∗ + γ(2αβ + 4) − 2γ2. In this expression, the coefficients on yt and πt

are positive. Higher output or higher inflation loosens the bound on the inflation target

because, with imperfect anchoring, they both raise future output and inflation.5

The nature of optimal policy depends on the function π∗(Xt). We have not been able

to derive general results about this function beyond the result that π∗
t must sometimes

exceed 2. In what follows, we analyze the function numerically.

4.2 The Behavior of the Short-Run Inflation Target

For given parameter values, we use numerical methods to derive a close approximation to

the π∗(·) function in the optimal policy rule. Specifically, we consider a version of the

policy problem with discounting but a discount factor very close to one, and solve the

Bellman equation using optimistic policy iteration (Bertsekas 2013). See the Appendix

for details.

We find that the π∗(·) function varies greatly depending on parameter values. However,

in all the cases we have examined, the function has one of three basic shapes: it is

monotonically increasing, monotonically decreasing, or U-shaped with a minimum at some

level of Xt.

We illustrate these possibilities with the parameterization of the model shown in

Table 1. We assume a fixed set of coefficients for the model’s equations, and fixed

distributions of shocks that roughly approximate normal distributions.6 We generate

different shapes of π∗(·) by varying the parameter µ, which determines the weights on

5With partial anchoring, substituting it = 0 into the IS equation yields Et[yt+1] = λyt + β(1− γ)πt +
β(2γ + r∗). The Phillips curve implies Et[πt+2] = Et[π

e
t+1] + αEt[yt+1]. From the partial anchoring

assumption and the Phillips curve, Et[π
e
t+1] = (1−γ)αyt+(1−γ)2πt+4γ− 2γ2. Combining these results

yields the expression for π̄t.
6For both the shock ϵ in the IS equation and the shock η in the Phillips curve, we discretize a normal

distribution N (0, 42) on a grid of 9 points ranging from -4 to 4 standard deviations using the method in
Tauchen (1986).
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Table 1: Parameterization of the Partially Anchored Model

α β λ γ µ

0.4 2.0 0.1 0.5 0.5, 0.9, 1.0

Figure 2: Optimal π∗(Xt)

(a) µ = 0.5

−5 0 5 10
Xt = Etπt+1

0

5

10

15

π
∗ (
X
t)

(b) µ = 0.9

−5 0 5 10
Xt = Etπt+1

4

6

8

10

π
∗ (
X
t)

(c) µ = 1.0

−5 0 5 10
Xt = Etπt+1

2

4

6

8

10

π
∗ (
X
t)

output and inflation variance in policymakers’ objective function. Figure 2 shows the π∗(·)

function for three values of µ (0.5, 0.9 and 1.0), which produce the three possible shapes.

The π∗(·) function can have various shapes because Xt, the expected value of next

period’s inflation rate, influences the policy problem in complex ways. The Appendix

discusses the relevant factors and the roles of various parameters in detail. Here we seek

to provide some intuition about why π∗ can be either increasing or decreasing in Xt.

One factor is the output variance term in policymakers’ objective function. When

anchoring is imperfect—expected inflation πe is tied to current inflation—large changes

in inflation require movements in output. Policymakers can stabilize output by keeping
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their target for inflation in two periods, π̂t = Et[πt+2], close to the expectation of inflation

in one period, Xt = Et[πt+1]. This factor tends to make π∗ an increasing function of Xt.

It is the dominant factor when output has a large weight in the objective function, i.e.,

when µ is low.

Another factor can make π∗ a decreasing function of Xt: the future risk of hitting the

zero bound on interest rates. For some parameter values, either a higher Xt or a higher

π̂t—that is, a higher expectation of inflation at t+ 1 or a higher target for t+ 2—raises

inflation at t+3 and later. As a result, Xt and π∗ are substitutes for reducing zero-bound

risk, and that fact tends to reduce the optimal π∗ when Xt is high.

4.3 Policy After a Low-Inflation Episode

In describing AIT, Fed officials have stressed the implications for policy following a period

of low inflation. After a low-inflation episode, the Fed “will likely aim to achieve inflation

moderately above 2 percent for some time.” Does optimal policy in our model include

this kind of overshooting of the long run inflation goal?

We address this question with an exercise in which inflation is initially low. Starting

from that point, we derive the path of inflation if the central bank follows the optimal

policy and the realizations of shocks are zero. We interpret this “intended inflation path”

as policymakers’ plan for returning inflation to a higher level. Of course actual inflation

will deviate from this path when shocks occur.

Specifically, we assume that the inflation rate starts at 1% in period t = 0. For

simplicity, the output gap is zero in period 0. We derive the intended inflation path for

the set of parameter values in Table 1, which imply the π∗(·) functions in Figure 2. We

compare results when the parameter µ in the objective function is 1.0 and 0.5.

In this example, the variable X0 = E0[π1] is determined by current output and inflation.

From the Phillips curve and expectations equation,

E0[π1] = 2γ + (1− γ)π0 + αy0 = 1 + γ. (11)
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Figure 3: Intended Inflation Paths

(a) µ = 0.5

0 2 4 6 8 10
Time

1.0

1.5

2.0

2.5

3.0
π

π = 2.70

initial state: π0 = 1.0, y0 = 0.0

(b) µ = 1.0
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The anchoring parameter γ is 0.5, so E0[π1] is 1.5. With shocks equal to zero, the actual

inflation rate in period 1, π1, is also 1.5.

Starting in period 2, the inflation rate is determined by the optimal policy rule.

With zero shocks, the upper bound on the target is never binding, and actual inflation

equals the target set two periods earlier: πt = π̂t−2 = π∗(Xt−2). Further, with zero

shocks, Xt−2 = Et−2[πt−1] = πt−1. Combining these facts, we obtain πt = π∗(πt−1), which

recursively defines the inflation path for t ≥ 2.

Figure 3 shows the intended inflation paths for µ = 0.5 and µ = 1.0. In both cases,
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we see that inflation converges to a constant level, which is defined by the fixed point of

π = π∗(π). This level exceeds 2%: as in the case of full credibility, policy targets inflation

above 2% when it can to offset periods when shocks force the target below 2%.

While inflation converges to similar levels for µ = 0.5 and µ = 1.0, it takes different

paths in the two cases. For µ = 0.5, the π∗(·) function is upward-sloping, so πt is increasing

in πt−1. This implies monotonic convergence: inflation rises steadily until it levels off.

This process is gradual, with inflation still rising noticeably in period 5. Faster adjustment

would be sub-optimal because it would require larger output movements.

For µ = 1, the π∗(·) function is downward sloping, so πt is decreasing in πt−1. This

implies non-monotonic convergence: the inflation rate jumps to 3.21 in period 2 before

converging to 3.07. The reason for this overshooting is that low inflation in period 0

implies a high risk of hitting the zero bound if adverse shocks occur. This risk creates an

incentive to target high inflation, which reduces the risk by pulling up expected inflation

πe.7

The overshooting in Figure 3 bears some resemblance to the Fed’s interpretation of

AIT. In both the model and the Fed’s rationale for its policy, temporarily high inflation

can be optimal because it pulls up expected inflation and thereby reduces zero-bound risk.

In the model, however, the rise in the intended inflation rate is only partly reversed: the

inflation target remains above 2% indefinitely, falling farther only when it is forced down

by the zero bound. The Fed aims for above-2% inflation only “for some time,” which

suggests that its target will return to 2% even if policy is unconstrained.

5 Conclusion

In 2025 the Federal Reserve will formally review the average-inflation-targeting strategy

that it announced in 2020, so now is a good time to analyze the strategy. To that end, this

paper derives optimal policy rules in a model with the key features that motivate AIT:

7The inflation rate continues to oscillate after period 2, but the oscillations are too small to be
noticeable in the Figure.
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the effective lower bound on interest rates, and the anchoring of inflation expectations.

We seek to capture these features in the simplest possible model.

With fully anchored expectations, the optimal policy is to target a fixed level of

inflation above 2% whenever the target is not forced lower by the bound on interest

rates. When expectations are only partially anchored and respond to movements in actual

inflation, the optimal short-run target varies with the state of the economy. For some

parameter values, the target is highest after a period of low inflation, when a high target

pulls up expected inflation and reduces the risk of hitting the interest-rate bound.
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A Appendix

A.1 Proof of Proposition 1

We prove Proposition 1, which states the optimal policy under full anchoring, in several

steps, each of which is summarized by its own proposition. We state these intermediate

results, then show how they lead to Proposition 1, and then prove the intermediate results.

The first step is to rewrite the policy problem. The text explains that a rule for setting

the policy interest rate it can be reinterpreted as a rule for setting an inflation target

π̂t = Et[πt+2]. A policy rule can also be interpreted as a rule for choosing a target for next

period’s output, ŷt = Et[yt+1], because the IS equation (1) implies a one-for-one relation

between it and Et[yt] given the current state of the economy. The first step in our proof

of Proposition 1 is a result that states the equivalence of the inflation targeting problem

to a simpler problem of choosing an output target to minimize the variance of output:

Proposition A.1. Consider the problem:

min
ŷ(Ωt)

Var(y)

s.t. ŷ−(Ωt) ≤ ŷt = ŷ(Ωt) ≤ λyt + b

E[y] = 0,

(A)

where ŷ−(Ωt) = λyt + b− βi− and b = β(2.0 + r∗). If ŷ(Ωt) solves this problem, then the

inflation targeting policy π̂(Ωt) = 2 + αŷ(Ωt) solves the policy problem stated in Section 2

of the text.

The next step is to tackle the problem in Proposition A.1 by showing it is related to

yet another problem. This problem modifies the loss function by removing the constraint

on E[y] and instead introducing a penalty on that term.

Proposition A.2. Consider the problem:

min
ŷ(Ωt)

{
E[y2] + θE[y]

}
s.t. ŷ−(Ωt) ≤ ŷt = ŷ(Ωt) ≤ λyt + b

(B)

If there exists some θ such that a policy ŷ(Ωt) solves Problem (B) and E[y] = 0 under that

policy, then ŷ(Ωt) also solves Problem (A).

By Proposition A.2, we need only find an optimal policy for the above problem such

that E[y] = 0. However, Problem (B) is still difficult to solve directly. Instead, we consider

a discounted version of the problem first and use dynamic programming to find a solution.

We then take the limit as the discount factor approaches one and show that the limit

policy solves Problem (B).
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Proposition A.3. Consider the discounted problem:

min
ŷ(Ωt)

{
E

∞∑
t=0

δt(y2t + θyt)

}
s.t. ŷ− ≤ ŷt = ŷ(Ωt) ≤ λyt + b

(C)

where ŷ− = (b− λϵ̄− βi−)/(1− λ). For any θ ∈ R and δ ∈ (0, 1), there exists a y∗ ∈ R
such that ŷ(Ωt) = min{y∗, λyt + b} is a unique optimal policy for Problem (C).

Notice that the lower bound on ŷt in Problem (C) is now a constant, which makes it

easier to apply dynamic programming. This bound is derived by first calculating y−, the

lowest value yt can attain under i = i−, and then setting ŷ− = y− + ϵ̄. It can be seen that

this bound is smaller than ŷ−(Ωt) in any state. Given Proposition A.3 for Problem (C),

we are able to establish the following result about Problem (B):

Proposition A.4. There exist a θ and a y∗ in R such that ŷ(Ωt) = min{y∗, λyt + b}
solves Problem (B) and E[y] = 0.

Given the propositions above, we are now able to prove Proposition 1.

Proof of Proposition 1. It follows from Proposition A.4 and Proposition A.2 that there

exists a y∗ such that the policy rule ŷ(Ωt) = min{y∗, λyt + b} solves Problem (A).

Proposition A.1 then implies that the solution to the original policy problem in the text

is π̂(Ωt) = min{π∗, π̄t}, where π∗ = 2 + αy∗ and π̄t = 2 + α(λyt + b). This expression for

π̄t is equal to the expression in our main theorem about optimal policy. To establish the

claim in that theorem, it remains to show that the target away from the zero bound, π∗,

exceeds 2, which follows if y∗ > 0. That condition holds because y ≤ y∗ in all states and

y < y∗ in some states, which imply E[y] < y∗, and E[y] = 0.

A.2 Proofs of Propositions A.1–A.4

Proof of Proposition A.1. From the Phillips curve, equation (3), Et[πt+2] = 2 + αEt[yt+1],

or π̂t = 2 + αŷt. Therefore an output-targeting rule ŷ(Ωt) is equivalent to an inflation

targeting rule π̂(Ωt) = 2 + αŷ(Ωt). In addition, the constraint ŷt ≤ λyt + b is equivalent

to π̂t ≤ π̄t, where π̄t = 2 + α(λyt + b), which is the constraint in the problem for choosing

the optimal π̂(Ωt). The lower bound on ŷt is also equivalent to the lower bound on π̂t.

Finally, the constraint E[π] = 2 is equivalent to E[y] = 0.

The objective function in the policy problem is (1− µ)Var(y) + µVar(π). From the

Phillips curve,

(1− µ)Var(y) + µVar(π) = (1− µ)Var(y) + µ[Var(αy) + Var(η)]
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= [1− µ+ µα2] Var(y) + µVar(η)

because ηt is uncorrelated with yt−1. Minimizing this expression is equivalent to minimizing

Var(y) because the other terms are constants. Therefore, if a policy rule ŷ(Ωt), or

equivalently π̂(Ωt) = 2 + αŷ(Ωt), solves Problem (A), then it solves the original policy

problem in Proposition 1, because the objective function and constraints are equivalent.

To simplify notation, for any output process y generated by ŷ(Ωt), we denote its mean

by E[ŷ] and its variance by Var(ŷ).

Proof of Proposition A.2. Assume there exists a θ such that ŷ(Ωt) solves Problem (B)

and E[ŷ] = 0. Then, E[ŷ2] = E (ŷ − E[ŷ])2 = Var(ŷ). Suppose some other policy rule

ŷ′(Ωt) solves Problem (A), which implies E[ŷ′] = 0 and Var(ŷ′) = E[ŷ′2] < Var(ŷ) = E[ŷ2].

Then E[ŷ′2] + θE[ŷ′] < E[ŷ2] + θE[ŷ], so ŷ no longer solves Problem (B). This is a

contradiction.

Proof of Proposition A.3. Given the bounds on ŷ, Problem (C) is well-defined on a com-

pact state space [y−, y
−] where y− = ŷ− − ϵ̄ and y− = (b+ ϵ̄)/(1− λ). The lower bound

y− is the lowest value yt can attain given ŷ−. The upper bound y− is the steady state

yt if it = 0 and ϵt = ϵ̄ in all periods. These bounds ensure that yt+1 ∈ [y−, y
−] whenever

yt ∈ [y−, y
−]. Since i− can be arbitrarily large, we can make ŷ− arbitrarily small and

assume that ŷ− < −θ/2. The Bellman equation is

v(y) = min
ŷ−≤ŷ≤λy+b

{y2 + θy + δ E v(ŷ + ϵ)}. (12)

Dynamic programming arguments (see, e.g., Stokey and Lucas 1989, Chapter 9.2) imply

that v(y) is the value function and the optimal policy rule is given by

ŷ(y) = argmin
ŷ−≤ŷ≤λy+b

{y2 + θy + δ E v(ŷ + ϵ)},

which is equivalent to

ŷ(y) = argmin
ŷ−≤ŷ≤λy+b

E v(ŷ + ϵ).

Since y2 + θy is strictly convex and the constraint set [ŷ−, λy + b] is convex in y, Theorem

9.8 of Stokey and Lucas (1989) implies that v is strictly convex. It then follows from

Stokey and Lucas (1989, Lemma 9.5) that E v(ŷ + ϵ) is strictly convex in ŷ. Therefore,

there exists a unique minimizer y∗ ∈ [ŷ−, y
− − ϵ̄]. In other words, y∗ is the optimal policy

in the absence of the zero lower bound in the current period. We claim that y∗ > ŷ− and

that the optimal policy for Problem (C) is given by ŷ(y) = min{y∗, λy + b}.
To see this, we first show that y∗ > ŷ−. Suppose y∗ = ŷ−. Since ŷ− is always in the

constraint set, the optimal policy rule is given by ŷ(y) = ŷ− for all y. Since v satisfies
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the Bellman equation (12), v(y) is given by y2 + θy + δC, where C = E v(ŷ− + ϵ) is a

constant. If this is the case, however,

E v(ŷ + ϵ) = E
[
(ŷ + ϵ)2 + θ(ŷ + ϵ) + δC

]
= ŷ2 + θŷ +Var(ϵ) + δC,

which is decreasing on [ŷ−,−θ/2] because ŷ− < −θ/2. This implies that ŷ− is not always

optimal, which is a contradiction. Hence, y∗ > ŷ−.

By convexity of v, ŷ 7→ E v(ŷ+ ϵ) is decreasing on [ŷ−, y
∗] and increasing on [y∗, y−− ϵ̄].

It follows that the optimal policy rule is ŷ(y) = min{λy + b, y∗}.

Proof of Proposition A.4. The theorem is proved in the following steps.

First, we consider a variant of Problem (B):

min
ŷ(Ωt)

{
E[y2] + θE[y]

}
s.t. ŷ− ≤ ŷt = ŷ(Ωt) ≤ λyt + b

(B’)

where the lower bound on ŷ− is fixed as in Problem (C). Problem (B’) is the same as

Problem (C) without discounting. By Lemma A.6, we can find the solution to (B’) by

taking the limit as δ → 1 of the solution to (C), given in Proposition A.3. This implies

that the optimal policy for Problem (B’) is given by ŷθ(y) = min{λy+b, y∗(θ)}. It remains

to show that ŷθ also solves Problem (B) for some θ with E[ŷθ] = 0.

We first prove that there exists a θ such that E[ŷθ] = 0. Lemma A.6 shows that as we

vary θ, y∗(θ) changes continuously. It follows from Lemma A.7 that E[ŷθ] is continuous

in θ. By Lemma A.8, there exist θ1 and θ2 such that E[ŷθ1 ] > 0 and E[ŷθ2 ] < 0. It then

follows from the intermediate value theorem that there exists a θ with E[ŷθ] = 0.

Finally, fix θ such that E[ŷθ] = 0. Lemma A.9 states that the solution to Problem (B’)

is also the solution to Problem (B). Therefore, ŷ(Ωt) = min{λyt + b, y∗(θ)} solves

Problem (B).

A.3 Sketch Proof of Proposition 2

We adopt a similar approach to the proof of Proposition 1, by considering an equivalent

problem of choosing an output target ŷ(Ωt) and then introducing a penalty on E[y] to

remove the constraint on long-run inflation:

min
ŷ(Ωt)

{
(1− µ) E[y2] + µE[(π − 2)2] + θE[y]

}
s.t. ŷ−(Ωt) ≤ ŷt = ŷ(Ωt) ≤ λyt + β(πe

t + r∗)
(13)

where expected inflation πe
t follows (5) and ŷ−(Ωt) = λyt + β(γ(2) + (1− γ)πt + r∗)− βi−.

If for some θ the solution to (13) satisfies E[y] = 0, then it also solves the original problem.

(E[y] = 0 is equivalent to E[π] = 2.)
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The discounted version of this problem is

min
ŷ(Ωt)

E
∞∑
t=0

δt
[
(1− µ)y2t + µ(πt − 2)2 + θyt

]
s.t. ŷ−(Ωt) ≤ ŷt = ŷ(Ωt) ≤ λyt + β(πe

t + r∗)

(14)

The Bellman equation is given by

v(y, π) = min
ŷ−(y,π)≤ŷ≤ȳ(y,π)

{
(1− µ)y2 + µ(π − 2)2 + θy + δ E v (ŷ + ϵ,X + η)

}
, (15)

where ȳ(y, π) = λy + β(γ(2) + (1− γ)π + r∗) and X = γ(2) + (1− γ)π + αy. Note that

we need two state variables due to partially anchored expectations. We have the following

proposition similar to Proposition A.3:

Proposition A.5. If γ satisfies

γ >
1

1 + 1−λ
αβ

, (16)

then Problem (14) has a solution and the optimal policy rule is given by

ŷ(y, π) = min {y∗(X), ȳ(y, π)} (17)

for some function y∗.

Condition (16) ensures that there exist Π = [π−, π
−] and Y = [y−, y

−] such that

(yt, πt) ∈ Y × Π for all t. To see why this is the case, we write the law of motion for yt

and πt as:[
yt+1

πt+1

]
= A

[
yt

πt

]
+

[
β(γ(2) + r∗)− βit + ϵt+1

γ(2) + ηt+1

]
, A =

[
λ β(1− γ)

α 1− γ

]
.

Then, the upper bounds for yt and πt are given by the steady state of the above system

when it = 0, ϵt = ϵ̄, and ηt = η̄ for all t. Similarly, the lower bounds can be computed by

setting it = i−, ϵt = −ϵ̄, and ηt = −η̄ for all t.

These steady states exist if and only if the spectral radius of A, ρ(A), is less than

one. By deriving the eigenvalues of this matrix, we can show that ρ(A) < 1 reduces to

condition (16). Then we have[
y−

π−

]
= (I − A)−1

[
β(γ(2) + r∗) + ϵ̄

γ(2) + η̄

]
,

[
y−

π−

]
= (I − A)−1

[
β(γ(2) + r∗)− βi− − ϵ̄

γ(2)− η̄

]
.

The way we choose the bounds ensures that (yt+1, πt+1) ∈ Y ×Π whenever (yt, πt) ∈ Y ×Π.

The existence of a compact state space allows us to apply dynamic programming

techniques, which show that the value function v is strictly convex and the optimal policy
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without the ELB in the current period depends only on X, the expected inflation next

period. In fact, y∗(X) is given by

y∗(X) = argmin
ŷ

{E v (ŷ + ϵ,X + η)} (18)

since ŷ does not affect current y or π.

Note that the policy rule given by (17) depends on the discount factor δ and the

parameter θ. Similar to the proof of Proposition 1, we first take the limit as δ approaches

one and then choose a θ such that E[y] = 0. Those steps yield the solution ŷ(y, π) for the

original policy problem. From ŷ and the Phillips curve, the optimal rule for the inflation

target is given by π̂(y, π) = min{π∗(X), π̄(y, π)} where π∗(X) = αy∗(X)+(1−γ)X+γ(2).

A.4 Numerical Method

For the model with imperfect anchoring, we solve the discounted version of the policy

problem (14) with a discount factor close to 1 (δ = 0.997). By a result similar to

Lemma A.6, the solution to this problem will be close to the optimal policy for the true

undiscounted problem.

To solve the discounted problem for a given θ, we first solve the Bellman equation (15)

using optimistic policy iteration (Bertsekas 2013, Chapter 2.5). After obtaining the value

function v, we compute the policy rule ŷ using (17) and (18).

The optimal policy in our model is the solution to (14) for θ such that E[ŷ] = 0. We

determine the optimal policy with an iterative procedure in which we make an initial

guess of θ; solve (14) to get the policy rule for that θ; calculate E[y] under that rule

by simulating the model for 10 million periods; and choose a revised θ with Brent’s

root finding algorithm (Brent 2013). We repeat this process until we find a policy with

E[y] = 0.

A.5 Further Results for the Model with Imperfect Anchoring

Section 4 shows that the optimal policy rule with imperfect anchoring is π̂t = min{π∗(Xt), π̄t},
where Xt = Et[πt+1]. We also give examples of the π∗(Xt) function for specific parameter

values. Here we delve further into the details of what determines the shape of π∗(Xt).

As discussed in the text, one determinant of π∗(·) is the value of µ, the weight on

inflation variance in the policymaker’s objective function. To build understanding, we first

consider the case in which µ = 1—the policymaker cares only about inflation variance—and

see how the π∗(·) function is influenced by the other parameters.
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The Case of µ = 1 In this case, the function π∗(·) is always monotonic. Its slope can

be either positive or negative and depends on a simple condition:

Numerical Result: When µ = 1, π∗ is increasing (decreasing) in X if (λ− αβ)

is positive (negative).

That is, the shape of π∗(·) is determined by three of the model’s parameters: the coefficients

in the IS curve on lagged output (λ) and the real interest rate (β), and the slope of the

Phillips curve (α).

We have not been able to prove this result analytically. We have, however, solved the

model numerically for wide ranges of parameter values and found that the result always

holds. We have also derived an analytical result for the knife-edge case of λ = αβ: For

that case, π∗ is a constant independent of X, as in the model with full credibility. (Proof

omitted.)

Examining the model can help us understand this result. The choice at t of an inflation

target, π̂t = Et[πt+2], affects the economy through two channels: It affects πt+2, and it

affects π̄t+1, the upper bound on the inflation target π̂t+1 that the policymaker will face at

t+ 1. The behavior of π∗(Xt) involves the somewhat complex interaction of Xt and π̄t+1.

To see this, note that π̄t+1 is a bound on the choice at t+ 1 of a target for πt+3. Using

the Phillips curve (3), this bound is

π̄t+1 = Et+1[π
e
t+2] + αȳt+1 (19)

where ȳt+1 is the bound on ŷt+1, the equivalent target for yt+2 set at t + 1, which is

determined by the IS equation (1) with it+1 = 0. With considerable algebra involving the

IS equation, Phillips curve, and equation (5) for πe, along with the facts that yt+1 = ŷt

plus shocks at t+ 1 and πt+2 equals π̂t plus shocks at t+ 1 and t+ 2, we can write the

bound π̄t+1 as

π̄t+1 = (1− γ)π̂t + α[λŷt + β(1− γ)Xt] + constant + shockst+1 (20)

Next, using the Phillips curve and the equation (5) for πe, we can derive the relationship

between the output target ŷt and the equivalent inflation target π̂t:

ŷt =
1

α
π̂t −

1− γ

α
Xt + constant (21)

Finally, substituting (21) into (20) leads to

π̄t+1 = (1− γ + λ)π̂t + (1− γ)(αβ − λ)Xt + constant + shockst+1. (22)

Equation (22) shows that the expectation of the future bound π̄t+1 is determined by π̂t

and Xt. A higher π̂t implies both higher inflation and higher output in the future, which
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raises the bound. A higher expectation of inflation Xt has an ambiguous effect. It directly

raises the bound for given π̂t and ŷt, as indicated by its positive coefficient in (20). More

subtly, it reduces the output target corresponding to a given inflation target, as shown

in (21), and this lower ŷ reduces π̄t+1, as shown in (20). As shown in (22), the sign of the

net effect is determined by the sign of λ− αβ.

The fact that a higher π̂t relaxes the future upper bound π̄t+1 creates an incentive

for the policymaker to choose a high π̂t. The effect of Xt on the choice of π̂t depends on

the complementarity or substitutability of Xt and π̂t as means of influencing π̄t+1. When

the coefficient on Xt is negative, a higher Xt implies a tighter bound at t+ 1 for a given

π̂t, and that increases the incentive to raise π̂t. Therefore, in this case, which arises for

λ > αβ, π∗
t is increasing in Xt. In contrast, when the coefficient on Xt is positive, a higher

Xt is a substitute for a higher π̂t in its effect on the future bound. As a result, a higher

Xt reduces the optimal target: π∗
t is decreasing in Xt.

The Case of µ < 1 When output variance is added to the objective function, we find

one consistent result:

Numerical Result: Holding constant all other parameter values, a decrease in

µ raises π∗(X2)− π∗(X1) for any X2 > X1.

That is, increasing the weight on output variance makes the slope of the π∗(·) function
more positive at all points. If the function is upward sloping for µ = 1, it is also upward

sloping and steeper for µ < 1. If the function is downward sloping for µ = 1, then for

µ < 1 it is less downward sloping and may become upward sloping at some or all points.

Once again we have not proven this result analytically, but it arises in a wide range of

simulations, including the examples given in Figure 2 of the text. In the Figure, π∗(·) is
downward-sloping for µ = 1. As µ falls, the slope becomes more positive, resulting first in

a U-shaped function and then, for even lower µ, an upward-sloping function. As discussed

in the text, a stronger desire to reduce output variance (a smaller µ) gives the policymaker

an incentive to target an inflation rate at t+ 2 that is close to the inflation rate at t+ 1,

and that tends to make the target an upward-sloping function of Xt = Et[πt+1].

A.6 Technical Lemmas

Lemma A.6. For any θ ∈ R and δ ∈ (0, 1), let y∗(θ, δ) denote the optimal output target

from Proposition A.3. Then, there exists y∗(θ) such that ŷθ(y) = min{λy+ b, y∗(θ)} solves

Problem (B’). Moreover,

(1) y∗(θ) = limδ→1 y
∗(θ, δ);

(2) y∗(θ) changes continuously with θ.
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Proof. Fix θ and δ ∈ (0, 1). Proposition A.3 guarantees the existence of an optimal policy

ŷθ,δ(y) = min{y∗(θ, δ), λy + b}. Pick any y0, y
′
0 and let {yt} and {ỹt} be generated by ŷθ,δ

starting from y0 and y′0, respectively. It can be shown that there exists a ρ ∈ (0, 1) such

that Corollary 11.2.22 of Stachurski (2009) applies and we have∣∣E(y2Nt + θyNt)− E(ỹ2Nt + θỹNt)
∣∣ ≤ (1− ρ)tM

for some N ≥ 1, and M < ∞. Then, Lemma 11.1.28 of Stachurski (2009) implies that

|v(y0)− v(y′0)| ≤
∣∣∣∣∣E

∞∑
t=0

δt(y2t + θyt)− E
∞∑
t=0

δt(ỹ2t + θỹt)

∣∣∣∣∣
≤

∞∑
t=0

∣∣E(y2t + θyt)− E(ỹ2t + θỹt)
∣∣ ≤ M̄

ρ

for some M̄ < ∞. Hence, the value-boundedness assumption of Dutta (1991) is satisfied.

Therefore, by Theorem 3 of Dutta (1991), vθ(y) = limδ→1(1 − δ)vθ,δ(y) is the value

function for Problem (B’) and ŷθ(y) = limδ→1 ŷθ,δ(y), if the limit exists, is an optimal

policy. Since ŷθ,δ(y) = min{λy + b, y∗(θ, δ)} is increasing in y, by Corollary 1 of Dutta

(1991), ŷθ(y) = min{λy + b, y∗(θ)} exists for some y∗(θ).

Next we prove the continuity of y∗(θ). Pick any sequence of θn such that limn→∞ θn = θ.

By Theorem 5.1 of Langen (1981), y∗(θ, δ) is continuous in θ and δ for all θ ∈ R

and δ ∈ (0, 1). By the results above, for each θn, there exist δm,n → 1 such that

y∗(θn, δm,n) → y∗(θn) and there exist δm → 1 such that y∗(θ, δm) → y∗(θ). Since

|y∗(θn)−y∗(θ)| ≤ |y∗(θn)−y∗(θn, δm,n)|+ |y∗(θn, δm,n)−y∗(θ, δm)|+ |y∗(θ, δm)−y∗(θ)|,

we can choose m and n sufficiently large to make |y∗(θn) − y∗(θ)| arbitrarily small.

Therefore, y∗(θn) → y∗(θ).

Lemma A.7. Let ŷx(y) = min{λy+b, x}. Then E[ŷx] is continuous and strictly increasing

in x.

Proof. That E[ŷx] is strictly increasing in x is obvious. To show continuity, note that for any

y and any ϵ > 0, there exists τ > 0 such that |x− x′| < τ implies that |ŷx(y)− ŷx
′
(y)| < ϵ.

Moreover, for any y, y′, |ŷx(y)−ŷx(y′)| ≤ λ|y−y′|. Therefore, |ŷx(y)−ŷx
′
(y′)| ≤ λ|y−y′|+ϵ.

Let {yt} and {ỹt} be generated by ŷx and ŷx
′
, respectively. Then, for any given sequence

of shocks {ϵn}, |yt − ỹt| ≤ ϵ(1 + λ+ . . .+ λt) = ϵ(1− λt)/(1− λ). Therefore,

|E[ŷx]− E[ŷx
′
]| ≤ lim

n→∞

1

n

n−1∑
t=0

ϵ
1− λt

1− λ

≤ lim
n→∞

1

n

n−1∑
t=0

ϵ
1

1− λ
= ϵ

1

1− λ
.

Since ϵ is arbitrary, E[ŷx] is continuous in x.
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Lemma A.8. For ŷθ given in Lemma A.6, there exist θ1, θ2 ∈ R such that E[ŷθ1 ] > 0 and

E[ŷθ2 ] < 0.

Proof. We can choose θ1 sufficiently small such that y2 + θ1y is strictly decreasing on the

state space [y−, y
−]. By Theorem 9.7 of Stokey and Lucas (1989), the value function v

is also strictly decreasing. Then, the optimal policy is ŷθ1(y) = λy + b, or equivalently,

ŷθ1(y) = min{λy + b, y−}. Similarly, we can choose θ2 sufficiently large such that y∗(θ2) =

ŷ−. By our assumption on ϵ̄, ŷ− < 0. It follows that E[ŷθ1 ] > 0 and E(ŷθ2) < 0.

Lemma A.9. If for some θ, ŷ(Ωt) solves Problem (B’) with E[y] = 0, then ŷ(Ωt) also

solves Problem (B).

Proof. By construction, it suffices to show that the optimal policy for Problem (B’) always

satisfies the constraints in Problem (B). Since E[y] = 0 under ŷ(Ωt) = min{y∗, λyt + b},
y∗ > 0. Since i− is arbitrarily large, we have

y∗ > 0 > λyt + b− βi−

for all t. Therefore,

λyt + b− βi− ≤ ŷ(Ωt) ≤ λyt + b

for all t. This completes the proof.
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